Skip to main content

Metagenomics of Saline Habitats with Respect to Bacterial Phylogeny and Biocatalytic Potential

  • Chapter
  • First Online:
Microorganisms in Sustainable Agriculture and Biotechnology

Abstract

Metagenomics, an emerging field of research, has been developed over the last several years to assess the genomes of the non-culturable microbes towards better understanding of global microbial ecology and to trap vast biotechnological potential of a given habitat. The basic strategies encompass sequence and functional based approaches. Since it is widely accepted that the majority of the microbes are not cultivable, the not-yet-cultivated microbes represent a shear unlimited and intriguing resource for the development of novel genes, enzymes and other compounds for applications in biotechnology.

One of the hurdles in the way of metagenomics is the extraction of total environmental DNA (metagenome) from a given habitat. We have explored various protocols, in terms of DNA purity, yield and humic acid content, for the isolation of metagenome from various saline soils of Gujarat, to substantiate its applications for further molecular biological work. Diversity based assessment has been elucidated on the basis of 16S rRNA amplicons – DGGE and ARDRA analysis (Molecular Fingerprinting Technique). Metagenomic library constructed from the saline habitats would provide a base to address adaptation strategies and its role in moderate saline and alkaline environment. Beside, the source would also provide a huge and comprehensive platform for capturing novel gene sequences. As an extension of our on-going work on haloalkaliphilic bacteria from the saline habitats of Coastal Gujarat, we have taken alkaline proteases as model system for the assessment of genetic diversity among these habitats by designing degenerate primers with the aid of bioinformatics tools. Successful Cloning and expression of alkaline proteases revealed unidentified gene/s with interesting features.

Several metagenomic mega projects such as Sargasso Sea, Acid-mine drainage, Human-Microbial Gut are completed worldwide successfully. However, similar efforts have not been focused in context with saline habitats. The initial results hold significance in the light of the fact that although saline environments display enormous microbial biodiversity, it remains largely unexplored. The application of metagenomic strategies embraces great potential to study and exploit the enormous microbial biodiversity present within the saline habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J.P. Acevedo, F. Reyes, L.P. Parra, O. Salazar, B.A. Andrews, J.A. Asenjo, J. Biotechnol. 33, 277–286 (2008)

    Article  Google Scholar 

  • H.J. Bach, A. Hartmann, M. Schloter, J.C. Munch, J. Microbial. Meth. 44, 173–182 (2001)

    Article  CAS  Google Scholar 

  • C. Chernitsyna, O.V. Shubenkova, T.I. Zemskaya, M.A. Grachev, A.L. Vereshchagin, T.Y. Kostornova, Contem. Probl. Ecol. 1, 1–12 (2008)

    Google Scholar 

  • D.A. Cowan, A. Arslanoglu, Burton, G.B. Stephanie, Cameron, A. Rory, G. Baker, Smith, J. Jacques; Q. Meyer. Biochem. Soc. Tran, 32, 298–302 (2004).

    Google Scholar 

  • J. Craig Venter, Science 304, 66–74 (2004)

    Article  PubMed  Google Scholar 

  • J.W. Craig, F.Y. Chang, J.H. Kim, S.C. Obiajulu, S.F. Brady, Appl. Environ. Microbiol. 76(51), 633–1641 (2010)

    Google Scholar 

  • R.E. De Castro, D.M. Ruiz, M.I. Giménez, M.X. Silveyra, R.A. Paggi, J.A. Maupin-Furlow, Extremophiles 12(5), 677–687 (2008)

    Article  PubMed  Google Scholar 

  • C. Desai, D. Madamwar, Biores. Technol. 98, 761–763 (2007)

    Article  CAS  Google Scholar 

  • M.S. Dodia, R.H. Joshi, R.K. Patel, S.P. Singh, Brazz. J. Microbiol. 37, 276–282 (2006)

    Article  CAS  Google Scholar 

  • M.S. Dodia, H.G. Bhimani, C.M. Rawal, R.H. Joshi, S.P. Singh, Biores. Technol. 99, 6223–6227 (2008a)

    Article  CAS  Google Scholar 

  • M.S. Dodia, C.M. Rawal, H.G. Bhimani, R.H. Joshi, S.K. Khare, S.P. Singh, J. Ind. Microbiol. Biotechnol. 35, 121–131 (2008b)

    Article  PubMed  CAS  Google Scholar 

  • H.P. Donovan, Bioinfo. 26(6), 715–721 ( 2010).

    Article  Google Scholar 

  • D. Ercolini, J. Microbiol. Meth. 56, 297–314 (2004)

    Article  CAS  Google Scholar 

  • M.G. Esther, J.D. Erik, B.J. Dick, FEMS Microb. Ecol. 44, 153–163 (2003)

    Article  Google Scholar 

  • M. Ferrer, A. Beloqui, K.N. Timmis, P.N. Golyshin, Mol. Microb. Biotechnol. 16, 109–123 (2009)

    Article  CAS  Google Scholar 

  • J. Gilbert, Nature (2010). doi:10.1007/978-3-540-77587-4/340

    Google Scholar 

  • F.O. Glöckner, R. Reinhardt, W. Liesack, Environ. Microbiol. 12(5), 1218–1229 (2010)

    Article  PubMed  Google Scholar 

  • B.D. Green, M. Keller, Curr. Opin. Biotechnol. 17, 236–240 (2006)

    Article  PubMed  CAS  Google Scholar 

  • A. Gupta, I. Roy, R.K. Patel, S.P. Singh, S.K. Khare, M.N. Gupta, J. Chromatogr. A 1075, 103–108 (2005)

    Article  PubMed  CAS  Google Scholar 

  • J. Handelsman, Microbiol. Mol. Biol. Rev. 68(4), 669–685 (2004)

    Article  PubMed  CAS  Google Scholar 

  • J. Handelsman, Metagenomics or megagenomics. Nat. Rev. Microbiol. 3, 13 (2005)

    Article  CAS  Google Scholar 

  • J.K. Hoff, T. Maike, L. Thomas, R. Daniel, B. Morgenstern, P. Meinicke, BMC Bioinformatics 9, 217 (2008)

    Article  PubMed  Google Scholar 

  • P. Hugenholt, G.W. Tyson, Nature 455, 481–483 (2008)

    Article  Google Scholar 

  • W.C. Jeffrey, Appl. Environ. Microbiol. 76(5), 1633–1641 (2010).

    Article  Google Scholar 

  • R. Jeroen, O.K. Jan, J.L. Martin, V.M. Christian, B. Peer, Genome Biol. 8, R10 (2007)

    Article  Google Scholar 

  • R.H. Joshi, M.S. Dodia, S.P. Singh, Biotechnol. Bioprocess Eng. 13, 552–559 (2008)

    Article  CAS  Google Scholar 

  • I.M. Kauffmann, J. Schmitt, R.D. Schmid, Appl. Microbiol. Biotechnol. 64, 665–670 (2004)

    Article  PubMed  CAS  Google Scholar 

  • J. Kennedy, J.R. Marchesi, Appl. Microbiol. Biotechnol. 75, 11–20 (2007)

    Article  PubMed  CAS  Google Scholar 

  • J. Kennedy, J.R. Marchesi, D.W. Dobson Alan, Microb. Cell Fact. 7, 27 (2008)

    Article  PubMed  Google Scholar 

  • G.A. Kowalchuk, P.L.E. Bodelier, G.H,J. Heilig, Stephen, J.R. Laanbroek. FEMS Microbiol Ecol. 27, 339–350 (2006)

    Google Scholar 

  • M. Liles, L. Williamson, J. Rodbumrer, V. Torsvik, R. Goodman, J. Handelsman, Appl. Environ. Microbiol. 7(10), 3302–3305 (2008)

    Article  PubMed  CAS  Google Scholar 

  • P. Lorenz, J. Eck, Nat. Rev. Microbiol. 3, 510–516 (2005)

    Article  PubMed  CAS  Google Scholar 

  • T. Mes, Environ. Microbiol. 10(1), 251–264 (2008)

    PubMed  CAS  Google Scholar 

  • R.R. Michelle, R.A. Paul, D.B. Alan, F.B. Sean, H.G. Trudy, R.L. Mark, A.L. Kara, A.L. Berkley, A.M. Ian, M. Charles, L.T. Choi, G. Michael, S.O. Marcia, C. Jon, J. Handelsman, M.G. Robert, Appl. Environ. Microbiol. 66(6), 2541–2547 (2000)

    Article  Google Scholar 

  • J.P. Miller, F. Reyes, L.P. Parra, O. Salazar, B.A. Andrews, J.A. Asenjo. J Biotechnol. 33, 277–286 (2008)

    Google Scholar 

  • K. Mitchell, D. Cristina, T. Vesbach, J. Ind. Microbiol. Biotechnol. 35, 1139–1147 (2008)

    Article  PubMed  CAS  Google Scholar 

  • J. Morgan, A. Darling, J. Eisen, PLoS One 5(4) (2010). doi:10.1371/journal.pone.0010209

    Google Scholar 

  • J.P. Morrissey, F. Gara, A.D.W. Dobson, Mar. Drugs 8, 608–628 (2010)

    Article  PubMed  Google Scholar 

  • S. Nakamura, C. Yang, N. Sakon, M. Ueda, T. Tougan, A. Yamashita, N. Goto, K. Takahashi, T. Yasunaga, K. Ikuta, T. Mizutani, Y. Okamoto, M. Tagami, R. Morita, N. Maeda, J. Kawai, H. Yoshihide, Y. Nagai, T. Horii, T. Iida, T. Nakaya, PLoS One 4(1), e4219 (2009). doi:10.1371

    Article  PubMed  Google Scholar 

  • X. Ni, L. Yue, Z. Chi, Z. Li, X. Wang, C. Madzak, Mar. Biotechnol. 11, 81–89 (2009)

    Article  PubMed  CAS  Google Scholar 

  • D.H. Parks, R.G. Beiko, Bioinformatics 26(6), 715–721 (2010)

    Article  PubMed  CAS  Google Scholar 

  • R.K. Patel, M.S. Dodia, S.P. Singh, Process Biochem. 40, 3569–3575 (2005)

    Article  CAS  Google Scholar 

  • R.K. Patel, M.S. Dodia, R.H. Joshi, S.P. Singh, Process Biochem. 41(9), 2002–2009 (2006a)

    Article  CAS  Google Scholar 

  • R.K. Patel, M.S. Dodia, R.H. Joshi, S.P. Singh, World J. Microbiol. Biotechnol. 22(4), 375–382 (2006b)

    Article  CAS  Google Scholar 

  • M.K. Purohit, Singh, S.P. Saurashta University, Rajkot (India) 17 (2010).

    Google Scholar 

  • M.K. Purohit, P.K Siddhpura, S.P. Singh, Sci. Excellence, Gujarat University, Ahmedabad (India). 28 (2010)

    Google Scholar 

  • J. Raes, P. Husenholts, S.G. Tringe, T. Doerks, L.J. Jensen, N. Ward, P. Bork, Sci. Exp. 2(10), 1–1126 (2007)

    Google Scholar 

  • J. Rajendhran, P. Gunasekaran, Biotechnol. Adv. 26(6), 576–590 (2008)

    Article  PubMed  CAS  Google Scholar 

  • C.D. Risenfeld, P.D. Schloss, J. Handelman, Annu. Rev. Genet. 38, 525–552 (2004)

    Article  Google Scholar 

  • M. Rondon, P. August, A. Bettermann, A, S. Brady, T. Grossman, M. Liles, K. Loiacon, B. Lynch, C. Minor, I. Macnile, C. Tiango, M. Gilman, M. Osburne, L. Clardy, Handelsman, J., Goodman, R. Appl Env Microbiol. 66(6), 2541–2547 (2000)

    Google Scholar 

  • Santosa, Mol. Biotechnol. 17, 1759–1764 (2001)

    Article  Google Scholar 

  • X.S. Sato, T. Nakano, Y. Hayashi, M.J. Yashiro, J. Am. Chem. Soc. 132, 3561–3573 (2010)

    Article  Google Scholar 

  • M.E. Setati, Afr. J. Biotechnol. 9(11), 1555–1560 (2010)

    CAS  Google Scholar 

  • P. Sharma, N. Capalash, J. Kaur, Mol. Biotechnol. 36, 61–63 (2007)

    Article  PubMed  CAS  Google Scholar 

  • P.K. Siddhpura, S. Vanparia, M.K. Purohit, S.P. Singh, Int. J. Biol. Mac. 47, 375–379 (2010)

    Article  Google Scholar 

  • R.D. Smith, M. Chapman, R. Am. Soc. Microbiol. 1(3), e00131–e001310 (2010). doi:10.1128/ mBio.00131-10

    Google Scholar 

  • N. Takahashi, M. Maeda, M. Yamasaki, B. Mikami, Chem. Biodiv. 7(6), 1634–1643 (2010)

    Article  CAS  Google Scholar 

  • J. Thumar, S.P. Singh, Brazz. J. Microbiol. 38, 1–5 (2007a)

    Article  Google Scholar 

  • J. Thumar, S.P. Singh, J. Chromatogr. B. 854, 198–203 (2007b)

    Article  CAS  Google Scholar 

  • J.T. Thumar, S.P. Singh, Indian Microbiol. Biotechnol. 36, 211–218 (2009)

    Article  CAS  Google Scholar 

  • S.G. Tringe, E.M. Rubin, Nat. Rev. Genet. 5(11), 805–814 (2005)

    Article  PubMed  CAS  Google Scholar 

  • S. Vijayanand, J. Hemapriya, J. Selvin, S. Kiran, Global J. Biotechnol. Biochem. 5(1), 44–49 (2010)

    CAS  Google Scholar 

  • S. Voget, C. Leggewie, A. Uesbeck, C. Raasch, K.E. Jaeger, W.R. Streit, Appl. Environ. Microbiol. 69, 6235–6242 (2003)

    Article  PubMed  CAS  Google Scholar 

  • E.H. William, K.J. Janet, K.C. Barry, M.T. James, Appl. Environ. Microbiol. 54, 703–711 (1988).

    Google Scholar 

  • E.H. William, App. Environ. Microbiol. 21, 703–711 (1998).

    Google Scholar 

  • C. Wooley, A. Godzik, I. Friedberg, PLoS Comput. Biol. 6(2), e1000667 (2010)

    Article  PubMed  Google Scholar 

  • M. Xu, X. Xiao, F. Wang, Extremophiles 12(2), 255–262 (2008)

    Article  PubMed  CAS  Google Scholar 

  • K. Yamada, T. Terahara, S. Kurata, T. Yokomaku, S. Tsuneda, S. Harayama, Environ. Microbiol. 10(4), 978–987 (2008)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The work from our research group cited in this chapter has been sponsored by Saurashtra University, Rajkot and University Grants Commission, New Delhi (UGC, New Delhi). Ms. Megha Purohit is a recipient of Senior Research Fellowship (SRF) sponsored by Council of Scientific and Industrial Research, New Delhi, India (CSIR, New Delhi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Purohit, M.K., Singh, S.P. (2012). Metagenomics of Saline Habitats with Respect to Bacterial Phylogeny and Biocatalytic Potential. In: Satyanarayana, T., Johri, B. (eds) Microorganisms in Sustainable Agriculture and Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2214-9_15

Download citation

Publish with us

Policies and ethics