Skip to main content

Regulation of Antibiotics Production in Biocontrol Strains of Pseudomonas spp.

  • Chapter
  • First Online:
Microorganisms in Sustainable Agriculture and Biotechnology

Abstract

Pseudomonas are ubiquitous aerobic, gram-negative rod-shaped motile bacteria. Their ability to survive in a variety of environments, and metabolic versatility, make them organisms of choice to explore a metabolic function. Among the myriad functions, their ability to suppress the pathogens (biological control) has made them highly popular. Pseudomonas spp. produce a range of secondary metabolites including antibiotics, siderophores, and HCN, a function often hypothesized to confer a selective advantage in the bacterial persistence in soil and the rhizosphere. Secondary metabolite production is regulated through multi-tier mechanisms. Feasibility of molecular genetic analysis and availability of genome sequences make them attractive model system to study the antibiotic production and its regulation. Secondary metabolism is regulated through various mechanisms acting at transcriptional and post-transcriptional levels. The highly conserved GacA/GacS two-component signal transduction is a universal global regulatory mechanism in fluorescent Pseudomonas spp. Stationary-phase gene expression is interwoven with this regulatory circuit, wherein stationary-phase sigma factor, RpoS is a central regulator controlling the stress tolerance and environmental fitness of a strain. A third pathway, consisting of small RNAs ensures secondary metabolism and biocontrol at post-transcriptional level. They scavenge small RNA binding proteins thereby relieving the translational repression of the target genes. Several functions and their regulatory network feed directly into the broad framework of quorum sensing (QS). In Pseudomonads, identified regulatory elements of QS include the RpoS, the GacS/GacA, and other two-component regulatory systems, the small RNA-binding regulator and many others. The discovery of new regulators of QS will help in elucidating the signal transduction mechanism in bacteria as a whole, and understanding the regulation of biocontrol function in Pseudomonads in particular. This is a pre-requisite for predicting the optimal environmental conditions for such bacteria to materialize their desired functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S. Aarons, A. Abbas, C. Adams, A. Fenton, F. O’Gara, F113. J. Bacteriol. 182, 3913–3919 (2000)

    PubMed  CAS  Google Scholar 

  • C. Aguilar, I. Bertani, V. Venturi, Appl. Environ. Microbiol. 69, 1739–1747 (2003)

    PubMed  CAS  Google Scholar 

  • K. Arima, H. Imanaka, M. Kousaka, A. Fukuda, G. Tamura, Agric. Biol. Chem. 28, 575–576 (1964)

    CAS  Google Scholar 

  • E. Baehler, M. Bottiglieri, M. Péchy-Tarr, M. Maurhofer, C. Keel, J. Appl. Microbiol. 99, 24–38 (2005)

    PubMed  CAS  Google Scholar 

  • E. Baehler, P. de Werra, L.Y. Wick, M. Péchy-Tarr, S. Mathys, M. Maurhofer, C. Keel, Mol. Plant Microbe Interact. 19, 313–329 (2006)

    PubMed  CAS  Google Scholar 

  • Y. Bashan, L.E. de-Bashan, in Encyclopaedia of Soils in the Environment, ed. by D. Hillel, vol. 1 (Elsevier, Oxford, U.K. 2005), pp. 103–115

    Google Scholar 

  • B.L. Bassler, Curr. Opin. Microbiol. 2, 582–587 (1999)

    PubMed  CAS  Google Scholar 

  • D.A. Bencini, C.R. Howell, J.R. Wild, Soil Biol. Biochem. 15, 491–492 (1983)

    CAS  Google Scholar 

  • C.L. Bender, V. Rangaswamy, J.E. Loper, Annu. Rev. Phytopathol. 37, 175–196 (1999)

    PubMed  CAS  Google Scholar 

  • E. Bent, S. Tuzun, C.P. Chanway, S. Enebak, Can. J. Microbiol. 47, 793–800 (2001)

    PubMed  CAS  Google Scholar 

  • I. Bertani, V. Venturi, Appl. Environ. Microbiol. 70, 5493–5502 (2004)

    PubMed  CAS  Google Scholar 

  • C. Blumer, S. Heeb, G. Pessi, D. Haas, Proc. Natl. Acad. Sci. USA 96, 14073–14078 (1999)

    PubMed  CAS  Google Scholar 

  • M. Brodhagen, M.D. Henkels, J.E. Loper, Appl. Environ. Microbiol. 70, 1758–1766 (2004)

    PubMed  CAS  Google Scholar 

  • C.T. Bull, B. Duffy, C. Voisard, G. Défago, C. Keel, D. Haas, Antonie Leeuwenhoek 79, 327–336 (2001)

    PubMed  CAS  Google Scholar 

  • E. Burrowes, C. Baysse, C. Adams, F. O’Gara, Microbiology 152, 405–418 (2006)

    PubMed  CAS  Google Scholar 

  • S.T. Chancey, D.W. Wood, L.S. Pierson, Appl. Environ. Microbiol. 65, 2294–2299 (1999)

    PubMed  CAS  Google Scholar 

  • A. Chatterjee, Y. Cui, H. Yang, A. Collmer, J.R. Alfano, A.K. Chatterjee, Mol. Plant Microbe Interact. 16, 1106–1107 (2003)

    PubMed  CAS  Google Scholar 

  • T.F.C. Chin A-Woeng, G.V. Bloemberg, B.J.J. Lugtenberg, New Phytol. 157, 503–523 (2003)

    CAS  Google Scholar 

  • T.F.C. Chin-A-Woeng, G.V. Bloemberg, A.J. Van der Bij, K.M.G.M. van der Drift, J. Schripsema, B. Kroon, R.J. Scheffer, C. Keel, P.A.H.M. Bakker, F.J. De Bruijn, J.E. Thomas-Oates, B.J.J. Lugtenberg, Mol. Plant Microbe Interact. 10, 79–86 (1998)

    Google Scholar 

  • T.F.C. Chin-A-Woeng, D. Van den Broek, G. de Voer, K.M.G.M. van der Drift, S. Tuinman, J.E. Thomas-Oates, B.J.J. Lugtenberg, G.V. Bloemberg, Mol. Plant Microbe Interact. 14, 969–979 (2001)

    PubMed  CAS  Google Scholar 

  • T.F.C. Chin-A-Woeng, V. den Broek, B.J.J. Lugtenberg, G.V. Bloemberg, Mol. Plant Microbe Interact. 18, 244–253 (2005)

    PubMed  CAS  Google Scholar 

  • D.K. Choudhary, A. Prakash, V. Wray, B.N. Johri, Curr. Sci. 97, 170–179 (2009)

    Google Scholar 

  • S. Compant, B. Reiter, A. Sessitsch, J. Nowak, C. Clément, E. Ait Barka, Appl. Environ. Microbiol. 71, 1685–1693 (2005)

    PubMed  CAS  Google Scholar 

  • R.J. Cook, Annu. Rev. Phytopathol. 31, 53–80 (1993)

    PubMed  CAS  Google Scholar 

  • R.J. Cook, K.R. Baker, The Nature and Practice of Biological Control of Plant Pathogens (American Phytopathological Society, St Paul, 1983)

    Google Scholar 

  • N.A. Corbell, J.E. Loper, J. Bacteriol. 177, 6230–6236 (1995)

    PubMed  CAS  Google Scholar 

  • C.D. Cox, Infect. Immun. 52, 263–270 (1986)

    PubMed  CAS  Google Scholar 

  • G. Défago, D. Haas, Soil Biochem. 6, 249–291 (1990)

    Google Scholar 

  • G. Défago, C. Keel, in Benefits and Risks of Introducing Biocontrol Agents, ed. by H.M.T. Hokkanen, J.M. Lynch (University Press, Cambridge, 1995), pp. 137–148

    Google Scholar 

  • S. Delaney, D. Mavrodi, R. Bonsall, L. Thomashow, J. Bacteriol. 183, 318–327 (2001)

    PubMed  CAS  Google Scholar 

  • P.M. Dewick, Nat. Prod. Rep. 1, 451–469 (1984)

    PubMed  CAS  Google Scholar 

  • E. Deziel, F. Lépine, S. Milot, J. He, M.N. Mindrinos, R.G. Tompkins, L.G. Rahme, Proc. Natl. Acad. Sci. USA 101, 1339–1344 (2004)

    PubMed  CAS  Google Scholar 

  • L.E.P. Dietrich, A. Price-Whelan, A. Petersen, M. Whiteley, D.K. Newman, Mol. Microbiol. 61, 1308–1321 (2006)

    PubMed  CAS  Google Scholar 

  • D.N. Dowling, F. O’Gara, TIBTECH 12, 133–141 (1994)

    CAS  Google Scholar 

  • C. Dubuis, C. Keel, D. Haas, Eur. J. Plant Pathol. 119, 311–328 (2007)

    Google Scholar 

  • B.K. Duffy, G. Defago, Appl. Environ. Microbiol. 65, 2429–2438 (1999)

    PubMed  CAS  Google Scholar 

  • S. Dutta, A.R. Podile, Crit. Rev. Microbiol. 36, 232–244 (2010)

    PubMed  Google Scholar 

  • M. Elasri, S. Delorme, P. Lemanceau, G. Stewart, B. Laue, E. Glickmann, P.M. Oger, Y. Dessaux, Appl. Environ. Microbiol. 67, 1198–1209 (2001)

    PubMed  CAS  Google Scholar 

  • W.G.D. Fernando, S. Nakkeeran, Y. Zhang, in PGPR: Biocontrol and Biofertilization, ed. by Z.A. Siddiqui (Springer, Dordrecht, Netherlands, 2005), pp. 67–109

    Google Scholar 

  • D.R. Fravel, Annu. Rev. Phytopathol. 26, 75–91 (1988)

    CAS  Google Scholar 

  • L. Friedman, R. Kolter, J. Bacteriol. 186(14), 4457–4465 (2004)

    PubMed  CAS  Google Scholar 

  • W.C. Fuqua, S.C. Winans, E.P. Greenberg, J. Bacteriol. 176, 269–275 (1994)

    PubMed  CAS  Google Scholar 

  • C. Fuqua, M.R. Parsek, E.P. Greenberg, Annu. Rev. Genet. 35, 439–468 (2001)

    PubMed  CAS  Google Scholar 

  • C. Gera, S. Srivastava, Curr. Sci. 90, 666–676 (2006)

    CAS  Google Scholar 

  • A.L. Goodman, B. Kulasekara, A. Rietsch, D. Boyd, R.S. Smith, S. Lory, Dev. Cell 7, 745–754 (2004)

    PubMed  CAS  Google Scholar 

  • D. Haas, G. Défago, Nat. Rev. Microbiol. 3, 307–319 (2005)

    PubMed  CAS  Google Scholar 

  • D. Haas, C. Keel, Annu. Rev. Phytopathol. 41, 117–153 (2003)

    PubMed  CAS  Google Scholar 

  • A. Hartmann, in Rhizosphere 2004: Perspectives and Challenges – A Tribute to Lorenz Hiltner. Bericht 05/2005 (ISSN 0721–1694), (GSF-Forschungszentrum, Neuherberg, 2005), pp. 1–4

    Google Scholar 

  • A. Hartmann, S. Gantner, R. Schuhegger, A. Steidle, C. Dürr, M. Schmid, C. Langebartels, F.B. Dazzo, L. Eberl, in Biology of Molecular Plant-Microbe Interaction, ed. by B. Lugtenberg, I. Tikhonovich, N. Provorov (IS-MPMI, St. Paul, 2004), pp. 554–556

    Google Scholar 

  • S. Heeb, D. Haas, Mol. Plant Microbe Interact. 14, 1351–1363 (2001)

    PubMed  CAS  Google Scholar 

  • S. Heeb, C. Blumer, D. Haas, J. Bacteriol. 184, 1046–1056 (2002)

    PubMed  CAS  Google Scholar 

  • S. Heeb, C. Valverde, C. Gigot-Bonnefoy, D. Haas, FEMS Microbiol. Lett. 243, 251–258 (2005)

    PubMed  CAS  Google Scholar 

  • R. Hengge-Aronis, Microbiol. Mol. Biol. Rev. 66, 373–395 (2002)

    PubMed  CAS  Google Scholar 

  • M.E. Hernandez, A. Kappler, D.K. Newman, Appl. Environ. Microbiol. 70, 921–928 (2004)

    PubMed  CAS  Google Scholar 

  • J.A. Hoch, Curr. Opin. Microbiol. 3, 165–170 (2000)

    PubMed  CAS  Google Scholar 

  • M. Holden, S. Swift, P. Williams, Trends Microbiol. 8, 101–104 (2000)

    PubMed  CAS  Google Scholar 

  • C.R. Howell, R.D. Stipanovic, Phytopathology 69, 480–482 (1979)

    Google Scholar 

  • C.R. Howell, R.D. Stipanovic, Phytopathology 70, 712–715 (1980)

    CAS  Google Scholar 

  • W.J. Howie, T.V. Suslow, Mol. Plant Microbe Interact. 4, 393–399 (1991)

    CAS  Google Scholar 

  • E.M. Hrabak, D.K. Willis, J. Bacteriol. 174, 3011–3020 (1992)

    PubMed  CAS  Google Scholar 

  • B. Humair, B. Wackwitz, D. Haas, Appl. Environ. Microbiol. 76(5), 1497–1506 (2010)

    PubMed  CAS  Google Scholar 

  • A. Iavicoli, E. Boutet, A. Buchala, J.P. Métraux, Mol. Plant Microbe Interact. 16, 851–858. 324 (2003)

    PubMed  CAS  Google Scholar 

  • Y. Irie, M. Starkey, A.N. Edwards, D.J. Wozniak, T. Romeo, M.R. Parsek, Mol. Microbiol. 78, 158–172 (2010)

    PubMed  CAS  Google Scholar 

  • A. Ishihama, Annu. Rev. Microbiol. 54, 499–518 (2000)

    PubMed  CAS  Google Scholar 

  • K.D. Jackson, M. Starkey, S. Kremer, M.R. Parsek, D.J. Wozniak, J. Bacteriol. 18, 4466–4475 (2004)

    Google Scholar 

  • D.L. Jones, P. Hinsinger, Plant Soil 312, 1–6 (2008)

    CAS  Google Scholar 

  • F. Jørgensen, M. Bally, V. Chapon-Herve, G. Michel, A. Lazdunski, P. Williams, G.S. Stewart, Microbiology 145, 835–844 (1999)

    PubMed  Google Scholar 

  • M. Juhas, L. Wiehlmann, B. Huber, D. Jordan, J. Lauber, P. Salunkhe, A.S. Limpert, F. von Götz, I. Steinmetz, L. Eberl, B. Tümmler, Microbiology 150, 831–841 (2004)

    PubMed  CAS  Google Scholar 

  • D. Kanner, N.N. Gerber, R. Bartha, J. Bacteriol. 134, 690–692 (1978)

    PubMed  CAS  Google Scholar 

  • E. Katz, A.L. Demain, Bacteriol. Rev. 41, 449–474 (1977)

    PubMed  CAS  Google Scholar 

  • E. Kay, C. Dubuis, D. Haas, Proc. Natl. Acad. Sci. USA 102, 17136–17141 (2005)

    PubMed  CAS  Google Scholar 

  • E. Kay, B. Humair, V. Denervaud, K. Riedel, S. Spahr, L. Eberl, C. Valverde, D. Haas, J. Bacteriol. 188, 6026–6033 (2006)

    PubMed  CAS  Google Scholar 

  • C. Keel, U. Schnider, M. Maurhofer, C. Voisard, J. Laville, U. Burger, P. Wirthner, D. Haas, G. Defago, Mol. Plant Microbe Interact. 5, 4–13 (1992)

    CAS  Google Scholar 

  • S.R. Khan, D.V. Mavrodi, G.J. Jog, H. Suga, L.S. Thomashow, S.K. Farrand, J. Bacteriol. 187, 6517–6527 (2005)

    PubMed  CAS  Google Scholar 

  • E.O. King, J. Lab. Clin. Med. 44, 301–307 (1954)

    PubMed  CAS  Google Scholar 

  • S. Kirner, P.E. Hammer, D.S. Hill, A. Altmann, I. Fischer, L.J. Weislo, J. Bacteriol. 180, 1939–1943 (1998)

    PubMed  CAS  Google Scholar 

  • T. Kitten, T.G. Kinscherf, J.L. McEvoy, D.K. Willis, Mol. Microbiol. 28, 917–929 (1998)

    PubMed  CAS  Google Scholar 

  • J.W. Kloepper, M.N. Schroth, in Proceeding of the IV International Conference on Plant Pathogenic Bacteria (Angers France 2, 1978), 879–882

    Google Scholar 

  • M. Kojic, G. Degrassi, V. Venturi, Biochim. Biophys. Acta 1489, 413–420 (1999)

    PubMed  CAS  Google Scholar 

  • H. Korth, Arch. Microbial. 92, 175–177 (1973)

    CAS  Google Scholar 

  • J. Kraus, J.E. Loper, Appl. Environ. Microbiol. 61, 849–854 (1995)

    PubMed  CAS  Google Scholar 

  • S. Labeyrie, E. Neuzil, Ann. Microbiol. 132, 31–40 (1981)

    Google Scholar 

  • K. Lapouge, E. Sineva, M. Lindell, K. Starke, C.S. Baker, P. Sabitzke, D. Haas, Mol. Microbiol. 66, 341–356 (2007)

    PubMed  CAS  Google Scholar 

  • K. Lapouge, M. Schubert, F.H.T. Allain, D. Haas, Mol. Microbiol. 67, 241–253 (2008)

    PubMed  CAS  Google Scholar 

  • A.M. Latifi, M. Foglino, K. Tanaka, P. Williams, A. Lazdunski, Mol. Microbiol. 21, 1137–1146 (1996)

    PubMed  CAS  Google Scholar 

  • B.E. Laue et al., Microbiology 146, 2469–2480 (2000)

    PubMed  CAS  Google Scholar 

  • J. Laville, C. Voisard, C. Keel, M. Maurhofer, G. Defago, D. Haas, Proc. Natl. Acad. Sci. 89, 1562–1566 (1992)

    PubMed  CAS  Google Scholar 

  • J.M. Ligon, D.S. Hill, P.E. Hammer, N.R. Torkewitz, D. Hofmann, H.-J. Kempf, K.-H. van Pée, Pest Manage. Sci. 56, 688–695 (2000)

    CAS  Google Scholar 

  • P.C. Loewen, B. Hu, J. Strutinsky, R. Sparling, Can. J. Microbiol. 44, 707–717 (1998)

    PubMed  CAS  Google Scholar 

  • B. Lugtenberg, F. Kamilova, Annu. Rev. Microbiol. 63, 541–556 (2009)

    PubMed  CAS  Google Scholar 

  • M. Matsukawa, E.P. Greenberg, J. Bacteriol. 186, 4449–4456 (2004)

    PubMed  CAS  Google Scholar 

  • M. Maurhofer, E. Baehler, R. Notz, V. Martinez, C. Keel, Appl. Environ. Microbiol. 70, 1990–1998 (2004)

    PubMed  CAS  Google Scholar 

  • O.V. Mavrodi, B.B.M. Gardener, D.V. Mavrodi, R.F. Bonsall, D.M. Weller, L.S. Thomashow, Phytopathology 91, 35–43 (2001)

    PubMed  CAS  Google Scholar 

  • D.V. Mavrodi, W. Blankenfeldt, L.S. Thomashow, Annu. Rev. Phytopathol. 44, 417–445 (2006)

    PubMed  CAS  Google Scholar 

  • M. Mazzola, R.J. Cook, L.S. Thomashow, D.M. Weller, L.S. Pierson, Appl. Environ. Microbiol. 58, 2616–2624 (1992)

    PubMed  CAS  Google Scholar 

  • M. McDonald, D.V. Mavrodi, L.S. Thomashow, H.G. Floss, J. Am. Chem. Soc. 123, 9459–9460 (2001)

    PubMed  CAS  Google Scholar 

  • J. Mercado-Blanco, P. Bakker, Antonie van Leeuwenhoek 92, 367–389 (2007)

    PubMed  Google Scholar 

  • C.D. Miller, Y.-C. Kim, A.J. Anderson, Can. J. Microbiol. 47, 41–48 (2001a)

    PubMed  CAS  Google Scholar 

  • C.D. Miller, W.S. Mortensen, G.U.L. Braga, A.J. Anderson, Curr. Microbiol. 43, 374–377 (2001b)

    PubMed  CAS  Google Scholar 

  • K. Miura, S. Inouye, A. Nakazawa, Mol. Gen. Genet. 259, 72–78 (1998)

    PubMed  CAS  Google Scholar 

  • L. Molina, F. Constantinescu, L. Michel, C. Reimmann, B. Duffy, G. De’fago, FEMS Microbiol. Ecol. 45, 71–81 (2003)

    PubMed  CAS  Google Scholar 

  • J.A. Moynihan, J.P. Morrissey, E.R. Coppoolse, W.J. Stiekema, F. O’Gara, E.F. Boyd, Appl. Environ. Microbiol. 75, 2122–2131 (2009)

    PubMed  CAS  Google Scholar 

  • L.M. Nelson, Plant growth promoting rhizobacteria (PGPR): Prospects for new inoculants. Crop Manage. (2004).doi:10.1094/CM-2004-0301-05-RV

    Google Scholar 

  • R. Notz, M. Maurhofer, U. Schnider-Keel, B. Duffy, D. Haas, Phytopathology 91, 873–881 (2001)

    PubMed  CAS  Google Scholar 

  • R. Notz, M. Maurhofer, H. Dubach, D. Haas, G. Défago, Appl. Environ. Microbiol. 68, 2229–2235 (2002)

    PubMed  CAS  Google Scholar 

  • B. Nowak-Thompson, S.J. Gould, J. Kraus, J. Loper, Can. J. Microbiol. 40, 1064–1066 (1994)

    CAS  Google Scholar 

  • N.J. Palleroni, in Pseudomonas: Genomics and Molecular Biology, ed. by P. Cornelis (Caister Academic Press, Hethersett, 2008), pp. 1–18

    Google Scholar 

  • M.D. Parkins, H. Ceri, D.G. Storey, Mol. Microbiol. 40, 1215–1226 (2001)

    PubMed  CAS  Google Scholar 

  • I.T. Paulsen, C.M. Press, J. Ravel, D.Y. Kobayashi, G.S. Myers, D.V. Mavrodi, R.T. DeBoy, R. Seshadri, Q. Ren, R. Madupu, R.J. Dodson, A.S. Durkin, L.M. Brinkac, S.C. Daugherty, S.A. Sullivan, M.J. Rosovitz, M.L. Gwinn, L. Zhou, D.J. Schneider, S.W. Cartinhour, W.C. Nelson, J. Weidman, K. Watkins, K. Tran, H. Khouri, E.A. Pierson, L.S. Pierson III, L.S. Thomashow, J.E. Loper, Nat. Biotechnol. 23, 873–878 (2005)

    PubMed  CAS  Google Scholar 

  • A.K. Pernestig, O. Melefors, D. Georgellis, J. Biol. Chem. 276, 225–231 (2001)

    PubMed  CAS  Google Scholar 

  • A.L. Perraud, W. Weiss, R. Gross, Trends. Microbiol. 7, 115–120 (1999)

    PubMed  CAS  Google Scholar 

  • A.L. Perraud, K. Rippe, M. Bantscheff, M. Glocker, M. Lucassen, K. Jung, W. Sebald, V. Weiss, R. Gross, Biochim. Biophys. Acta 1478, 341–354 (2000)

    PubMed  CAS  Google Scholar 

  • G. Pessi, F. Williams, Z. Hindle, K. Heulier, M.T.G. Holden, J. Bacteriol. 183, 6676–6683 (2001)

    PubMed  CAS  Google Scholar 

  • D.A. Phillips, T.C. Fox, M.D. King, T.V. Bhuvaneswari, L.R. Teuber, Plant Physiol. 136, 2887–2894 (2004)

    PubMed  CAS  Google Scholar 

  • C. Picard, F. di Cello, M. Ventura, R. Fani, A. Guckert, Appl. Environ. Microbiol. 66, 948–955 (2000)

    PubMed  CAS  Google Scholar 

  • L.S. Pierson, L.S. Thomashow, Mol. Plant Microbe Interact. 5, 330–339 (1992)

    PubMed  CAS  Google Scholar 

  • L.S. Pierson, V.D. Keppenne, D.W. Wood, J. Bacteriol. 176, 3966–3974 (1994)

    PubMed  CAS  Google Scholar 

  • L.S. Pierson III, D.W. Wood, E.A. Pierson, S.T. Chancey, Eur. J. Plant Pathol. 104, 1–9 (1998)

    CAS  Google Scholar 

  • M.C. Pirrung, Chem. Biol. 6, R167–R175 (1999)

    PubMed  CAS  Google Scholar 

  • A. Price-Whelan, L.E.P. Dietrich, D.K. Newman, Nat. Chem. Biol. 2, 71–78 (2006)

    PubMed  CAS  Google Scholar 

  • J.M. Raaijmakers, D.M. Weller, Mol. Plant Microbe Interact. 11, 144–152 (1998)

    CAS  Google Scholar 

  • J.M. Raaijmakers, D.M. Weller, Appl. Environ. Microbiol. 67, 2545–2554 (2001)

    PubMed  CAS  Google Scholar 

  • J.M. Raaijmakers, D.M. Weller, L. Thomashow, Appl. Environ. Microbiol. 63, 881–887 (1997)

    PubMed  CAS  Google Scholar 

  • J.M. Raaijmakers, M. Vlami, J.T. de Souza, Antonie van Leeuwenhoek 81, 537–547 (2002)

    PubMed  CAS  Google Scholar 

  • J.M. Raaijmakers, I. de Bruijn, M.J.D. de Kock, Mol. Plant Microbe Interact. 19, 699–710 (2006)

    PubMed  CAS  Google Scholar 

  • J. Raaijmakers, T.C. Paulitz, C. Steinberg, C. Alabouvette, Y. Moënne-Loccoz, Plant Soil 321, 341–361 (2009)

    CAS  Google Scholar 

  • M.I. Ramos-González, S. Molin, J. Bacteriol. 180, 3421–3431 (1998)

    PubMed  Google Scholar 

  • G. Rampioni, F. Polticelli, I. Bertani, K. Righetti, V. Venturi, E. Zennaro, L. Leoni, J. Bacteriol. 189, 1922–1930 (2007)

    PubMed  CAS  Google Scholar 

  • C. Reimann, C. Valverde, E. Kay, D. Haas, J. Bacteriol. 187, 276–285 (2005)

    Google Scholar 

  • C. Reimmann, M. Beyeler, A. Latifi, H. Winteler, M. Foglino, A. Lazdunski, D. Haas, Mol. Microbiol. 24, 309–319 (1997)

    PubMed  CAS  Google Scholar 

  • S.A. Rice, M. Givskov, P. Steinberg, S. Kjelleberg, J. Mol. Microbiol. Biotechnol. 1, 23–31 (1999)

    PubMed  CAS  Google Scholar 

  • J.J. Rich, T.G. Kinscherf, T. Kitten, D.K. Willis, J. Bacteriol. 176, 7468–7475 (1994)

    PubMed  CAS  Google Scholar 

  • K. Riedel, M. Hentzer, O. Geisenberger, B. Huber, A. Steidle, H. Wu, N. Hoiby, M. Givskov, S. Molin, L. Eberl, Microbiology 147, 3249–3262 (2001)

    PubMed  CAS  Google Scholar 

  • V.L. Robinson, D.R. Buckler, A.M. Stock, Nat. Struct. Biol. 7, 626–633 (2000)

    PubMed  CAS  Google Scholar 

  • H. Rodriguez, R. Fraga, Biotechnol. Adv. 17, 319–339 (1999)

    PubMed  CAS  Google Scholar 

  • P. Sacherer, G. Défago, D. Haas, FEMS (Fed.Eur. Microbiol. Soc.) Microbiol. Lett. 116, 155–160 (1994)

    CAS  Google Scholar 

  • A. Sarniguet, J. Kraus, M.D. Henkels, A.M. Muehlchen, J.E. Loper, Proc. Natl. Acad. Sci. 92, 12255–12259 (1995)

    PubMed  CAS  Google Scholar 

  • U. Schnider-Keel, A. Seematter, M. Maurhofer, C. Blumer, B. Duffy, C. Gigot-Bonnefoy, C. Reimmann, R. Notz, G. Défago, D. Haas, C. Keel, J. Bacteriol. 182, 1215–1225 (2000)

    PubMed  CAS  Google Scholar 

  • M. Schuster, A.C. Hawkins, C.S. Harwood, E.P. Greenberg, Mol. Microbiol. 51, 973–985 (2004)

    PubMed  CAS  Google Scholar 

  • J. Singh, S. Zhang, C. Chen, L. Cooper, P. Bregitzer, A. Sturbaum, P.M. Hayes, P.G. Lemaux, Plant Mol. Biol. 62(6), 937–950 (2006)

    PubMed  CAS  Google Scholar 

  • P.J. Slininger, M.A. Jackson, Appl. Microbiol. Biotechnol. 37, 388–392 (1992)

    CAS  Google Scholar 

  • P.J. Slininger, M.A. Shea-Wilbur, Appl. Microbiol. Biotechnol. 43, 794–800 (1995)

    PubMed  CAS  Google Scholar 

  • E. Somers, J. Vanderleyden, M. Srinivasan, Crit. Rev. Microbiol. 30, 205–240 (2004)

    PubMed  CAS  Google Scholar 

  • J. Sørensen, in Modern Soil Microbiology, ed. by J.D. Van Elsas, J.T. Trevors, E.M.H. Wellington (Marcel Dekker, New York, 1997), pp. 21–45

    Google Scholar 

  • A.M. Stock, V.L. Robinson, P.N. Goudreau, Annu. Rev. Biochem. 69, 183–215 (2000)

    PubMed  CAS  Google Scholar 

  • V.O. Stockwell, J.E. Loper, Microbiology 151, 3001–3009 (2005)

    PubMed  CAS  Google Scholar 

  • S.-J. Suh, L. Silo-Suh, D.E. Woods, D.J. Hasset, S.E.H. West, D.E. Ohman, J. Bacteriol. 181, 3890–3897 (1999)

    PubMed  CAS  Google Scholar 

  • S. Swift, J.A. Downie, N.A. Whitehead, A.M.L. Barnard, G.P.C. Salmond, P. Williams, Adv. Microb. Physiol. 45, 199–270 (2001)

    PubMed  CAS  Google Scholar 

  • R. Takeda, Hako Kogaku Zasshi 36, 281–290 (1958)

    CAS  Google Scholar 

  • K. Tanaka, H. Takahashi, Gene 150, 81–85 (1994)

    PubMed  CAS  Google Scholar 

  • L.S. Thomashow, D.M. Weller, J. Bacteriol. 170, 3499–3508 (1988)

    PubMed  CAS  Google Scholar 

  • L.S. Thomashow, R.F. Bonsall, D.W. Weller, in Manual Environ. Microbiol., ed. By C.J. Hurst, G.R. Knudsen, M.J. McInerney, L.D. Stetzenbach, M.V. Walter (ASM Press, Washington DC,1997), pp. 493–499.

    Google Scholar 

  • K.V.B.R. Tilak, B.S. Reddy, Curr. Sci. 90, 642–644 (2006)

    Google Scholar 

  • K.V.B.R. Tilak, N. Ranganayaki, C. Manoharachari, Eur. J. Soil Sci. 57, 67–71 (2005)

    Google Scholar 

  • R.K. Tripathi, D. Gottlieb, J. Bacteriol. 100, 310–318 (1969)

    PubMed  CAS  Google Scholar 

  • J.M. Turner, A.J. Messenger, Adv. Microb. Physiol. 27, 211–275 (1986)

    PubMed  CAS  Google Scholar 

  • A. Upadhyay, S. Srivastava, Lett. Appl. Microbiol. 47, 98–105 (2008)

    PubMed  CAS  Google Scholar 

  • A. Upadhyay, S. Srivastava, Indian J. Exp. Biol. 48, 601–609 (2010)

    PubMed  CAS  Google Scholar 

  • A. Upadhyay, S. Srivastava, Microbiol. Res. 166, 323–335 (2011)

    Google Scholar 

  • S. Uroz, C. D’Angelo-Picard, A. Carlier, M. Elasri, C. Sicot, A. Petit, P. Oger, D. Faure, Y. Dessaux, Microbiology 149, 1981–1989 (2003)

    PubMed  CAS  Google Scholar 

  • C. Valverde, Arch. Microbiol. 191, 349–359 (2009)

    PubMed  CAS  Google Scholar 

  • C. Valverde, S. Heeb, C. Keel, D. Haas, Mol. Microbiol. 50, 1361–1379 (2003)

    PubMed  CAS  Google Scholar 

  • C. Valverde, M. Lindell, E.G.H. Wagner, D. Haas, J. Biol. Chem. 279, 25066–25074 (2004)

    PubMed  CAS  Google Scholar 

  • L.C. Van Loon, P.A. Bakker, C.M. Pieterse, Annu. Rev. Phytopathol. 36, 453–483 (1998)

    PubMed  Google Scholar 

  • E.T. Van Rij, M. Wesselink, T.F.C. Chin-A-Woeng, G.V. Bloemberg, B.J.J. Lugtenberg, Mol. Plant Microbe Interact. 17, 557–566 (2004)

    PubMed  Google Scholar 

  • C.S. Vandenende, M. Vlasschaert, S.Y.K. Seah, J. Bacteriol. 186, 5596–5602 (2004)

    PubMed  CAS  Google Scholar 

  • I. Ventre, A.L. Goodman, I. Vallet-Gely, P. Vasseur, C. Soscia, S. Molin, S. Bleves, A. Lazdunski, S. Lory, A. Filloux, P. Natl. Acad. Sci. USA 103, 171–176 (2006)

    CAS  Google Scholar 

  • V. Venturi, Mol. Microbiol. 49, 1–9 (2003)

    PubMed  CAS  Google Scholar 

  • V. Venturi, FEMS Microbiol. Rev. 30, 274–291 (2006)

    PubMed  CAS  Google Scholar 

  • M.N. Vincent, L.A. Harrison, J.M. Brackin, P.A. Kovacevich, P. Murkerji, D.M. Weller, E.A. Pierson, Appl. Environ. Microbiol. 57, 2928–2934 (1991)

    PubMed  CAS  Google Scholar 

  • H.L. Wei, L.Q. Zhang, Antonie van Leeuwenhoek 89, 267–280 (2006)

    PubMed  Google Scholar 

  • D.M. Weller, Annu. Rev. Phytopathol. 26, 379–407 (1988)

    Google Scholar 

  • D.M. Weller, Phytopathol 97, 250–256 (2007)

    PubMed  Google Scholar 

  • D.M. Weller, J.M. Raaijmakers, B.B. Gardener, L.S. Thomashow, Annu. Rev. Phytopathol. 40, 309–348 (2002)

    PubMed  CAS  Google Scholar 

  • D.M. Weller, B.B. Landa, O.V. Mavrodi, K.L. Schroeder, L. De La Fuente, S. Blouin Bankhead, R. Allende Molar, R.F. Bonsall, D.V. Mavrodi, L.S. Thomashow, Plant Biol. 9, 4–20 (2007)

    PubMed  CAS  Google Scholar 

  • J. Whipps, J. Exp. Bot. 52, 487–511 (2001)

    PubMed  CAS  Google Scholar 

  • C.A. Whistler, L.S. Pierson III, J. Bacteriol. 185, 3718–3725 (2003)

    PubMed  CAS  Google Scholar 

  • C.A. Whistler, N.A. Corbell, A. Sarniguet, W. Ream, J.E. Loper, Bacteriology 180, 6635–6641 (1998)

    CAS  Google Scholar 

  • C.A. Whistler, V.O. Stockwell, J.E. Loper, Appl. Environ. Microbiol. 66, 2718–2725 (2000)

    PubMed  CAS  Google Scholar 

  • N.A. Whitehead, A.M.L. Barnard, H. Slater, N.J.L. Simpson, G.P.C. Salmond, FEMS Microbiol. Rev. 25, 365–404 (2001)

    PubMed  CAS  Google Scholar 

  • M. Whiteley, K.M. Lee, E.P. Greenberg, Proc. Natl. Acad. Sci. USA 96, 13904–13909 (1999)

    PubMed  CAS  Google Scholar 

  • M. Whiteley, M.R. Parsek, E.P. Greenberg, J. Bacteriol. 182, 4356–4360 (2000)

    PubMed  CAS  Google Scholar 

  • S.B. Williams, V. Stewart, Mol. Microbiol. 33, 1093–1102 (1999)

    PubMed  CAS  Google Scholar 

  • D.W. Wood, L.S. Pierson III, Gene 168, 49–53 (1996)

    PubMed  CAS  Google Scholar 

  • D.W. Wood, F. Gong, M.M. Daykin, P. Williams, L.S. Pierson, J. Bacteriol. 179, 7663–7670 (1997)

    PubMed  CAS  Google Scholar 

  • M. Workentine, L. Chang, H. Ceri, R. Turner, FEMS Microbiol. Lett. 292, 50–56 (2009)

    PubMed  CAS  Google Scholar 

  • Q. Yan, X.G. Wu, H.L. Wei, H.M. Wang, L.Q. Zhanga, Microbiol. Res. 164, 18–26 (2009)

    PubMed  CAS  Google Scholar 

  • Z. You, J. Fukushima, K. Tanaka, S. Kawamoto, K. Okuda, FEMS Microbiol. Lett. 164, 99–106 (1998)

    PubMed  CAS  Google Scholar 

  • S. Zuber, F. Carruthers, C. Keel, A. Mattart, C. Blumer, G. Pessi, C. Gigot-Bonnefoy, U. Schnider-Keel, S. Heeb, C. Reimmann, D. Haas, Mol. Plant Microbe Interact. 16, 634–644 (2003)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Srivastava, S., Sinha, V., Vaishnavi, A., Kunwar, T., Tigga, R.S. (2012). Regulation of Antibiotics Production in Biocontrol Strains of Pseudomonas spp.. In: Satyanarayana, T., Johri, B. (eds) Microorganisms in Sustainable Agriculture and Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2214-9_11

Download citation

Publish with us

Policies and ethics