Skip to main content

Adapting to Hypoxia: Lessons from Vascular Endothelial Growth Factor

  • Chapter
  • First Online:
Anoxia

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 21))

  • 1912 Accesses

Abstract

Most life forms on the Earth depend on oxygen for continued existence. However, periods of low oxygen (hypoxia) can be tolerated and are even inherent in normal development and function such as during embryogenesis and strenuous exercise. The process of adapting to prolonged hypoxia involves activation of a new genetic program which, if not precisely orchestrated, can result in cell death. It is perhaps not surprising that multiple pathways have evolved for ensuring the up-regulation of essential genes necessary for hypoxic adaptation. This review will describe mechanisms of cellular adaptation to hypoxia with special emphasis on vascular endothelial growth factor (VEGF), one of the most ubiquitous and extensively studied hypoxia-inducible genes. VEGF is known to be up-regulated at the level of transcription and mRNA stabilization due to the action of multiple factors which can act independently or in concert. A number of mechanisms for targeting specific genes for increased mRNA translation during hypoxia have been elucidated and will be discussed with respect to VEGF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bastide A, Karaa Z, Bornes S, Hieblot C, Lacazetter E, Prats H, Touriol C (2008) An upstream open reading frame within an IRES controls expression of a specific VEGF-A isoform. Nucleic Acids Res 36:2434–2445

    Article  PubMed  CAS  Google Scholar 

  • Bornes S, Prado-Lourenco L, Bastide A, Zanibellato C, Iacovoni JS, Lacazette E, Prats A-C, Touriol C, Prats H (2007) Translational induction of VEGF internal ribosome entry site elements during the early response to ischemic stress. Circulation 100:305–308

    Article  CAS  Google Scholar 

  • Cascio S, D’andrea A, Ferla R, Surmacz E, Gulotta E, Amodeo V, Bazan V, Gebbia N, Russo A (2010) miR-20b modulates VEGF expression by targeting HIF-1a and STAT3 in MCF-7 breast cancer cells. J Cell Physiol 224:242–249

    PubMed  CAS  Google Scholar 

  • Claffey KP, Shih S-C, Mullen A, Dziennis S, Cusick JL, Abrams KR, Lee SW, Detmar M (1998) Identification of a human VPF/VEGF 3′ untranslated region mediating hypoxia-induced mRNA stability. Mol Biol Cell 9:469–481

    PubMed  CAS  Google Scholar 

  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–13

    PubMed  CAS  Google Scholar 

  • Ghosh AK, Shanafelt TD, Cimmino A, Taccioli C, Volinia S, Liu C-g, Calin GA, Croce CM, Chan DA, Giaccia AJ, Secreto C, Wellik LE, Lee YK, Mukhopadhyay D, Kay NE (2009) Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood 2009(113):5568–5574

    Article  Google Scholar 

  • Ghosh R, Lipson KL, Sargent KE, Mercurio AM, Hunt JS, Ron D, Urano F (2010) Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS One 5:e9575

    Article  PubMed  Google Scholar 

  • Goldberg MA, Gaut CC, Bunn HF (1991) Erythropoietin mRNA levels are governed by both the rate of gene transcription and posttranscriptional events. Blood 77:271–277

    PubMed  CAS  Google Scholar 

  • Goldberg-Cohen I, Furneaux H, Levy AP (2002) A 40 bp RNA element that mediates stabilization of VEGF mRNA by HuR. J Biol Chem 277:13635–40

    Article  PubMed  CAS  Google Scholar 

  • Graber TE, Holcik M (2007) Cap-independent regulation of gene expression in apoptosis. Mol Biosyst 3:825–34

    Article  PubMed  CAS  Google Scholar 

  • Huez I, Creancier L, Audigier S, Gensac MC, Prats AC, Prats H (1998) Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol 18:6178–90

    PubMed  CAS  Google Scholar 

  • Just N, Moreau C, Lassalle P, Gosset P, Perez T, Brunaud-Danel V, Wallaert B, Destee A, Defebvre L, Tonnel AB, Devos D (2007) High erythropoietin and low vascular endothelial growth factor levels in cerebrospinal fluid from hypoxemic ALS patients suggesting an abnormal response to hypoxia. Neuromuscul Disord 17:169–173

    Article  PubMed  CAS  Google Scholar 

  • Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, Calin GA, Ivan M (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867

    Article  PubMed  CAS  Google Scholar 

  • Kulshreshtha R, Davuluri RV, Calin GA, Ivan M (2008) A microRNA component of the hypoxic response. Cell Death Differ 15:667–671

    Article  PubMed  CAS  Google Scholar 

  • Lei Z, Li B, Yang Z, Fang H, Zhang G-M, Feng Z-H, Huang B (2009) Regulation of HIF-1a and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS One 4:e7629

    Article  PubMed  Google Scholar 

  • Lejbkowicz F, Goldberg-Cohen I, Levy AP (2005) New horizons for VEGF. Is there a role for nuclear localization? Acta Histochem 106:405–411

    Article  PubMed  CAS  Google Scholar 

  • Levy AP, Levy NS, Wegner S, Goldberg MA (1995) Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 270:13333–13340

    Article  PubMed  CAS  Google Scholar 

  • Levy AP, Levy NS, Goldberg MA (1996a) Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 271:2746–2753

    Article  PubMed  CAS  Google Scholar 

  • Levy AP, Levy NS, Goldberg MA (1996b) Hypoxia-inducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von Hippel-Lindau protein. J Biol Chem 271:25492–25497

    Article  PubMed  CAS  Google Scholar 

  • Levy NS, Chung S, Furneaux H, Levy AP (1998) Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 273:6417–23

    Article  PubMed  CAS  Google Scholar 

  • Lu PD, Harding HP, Ron D (2004) Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 167:27–33

    Article  PubMed  CAS  Google Scholar 

  • Marsh S, Nakhoul FM, Skorecki K, Rubin A, Miller BP, Leibu R, Levy NS, Levy AP (2000) Hypoxic induction of vascular endothelial growth factor is markedly decreased in diabetic individuals who do not develop retinopathy. Diabetes Care 23:1375–1380

    Article  PubMed  CAS  Google Scholar 

  • Onesto C, Berra E, Grépin R, Pagès G (2004) Poly(A)-binding protein-interacting protein 2, a strong regulator of vascular endothelial growth factor mRNA. J Biol Chem 279:34217–34226

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum-Dekel Y, Fuchs A, Yakirevich E, Azriel A, Mazareb S, Resnick MB, Levi B-Z (2005) Nuclear localization of long-VEGF is associated with hypoxia and tumor angiogenesis. Biochem Biophys Res Commun 332:271–278

    Article  PubMed  CAS  Google Scholar 

  • Schultz A, Lavi L, Hochberg I, Beyar R, Stone T, Skorecki K, Lavie P, Roguin A, Levy AP (1999) Interindividual heterogeneity in the hypoxic regulation of VEGF: significance for the development of the coronary artery collateral circulation. Circulation 100:547–552

    PubMed  CAS  Google Scholar 

  • Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE (1991) Hypoxia inducible nuclear factors bind to an enhancer element located 30 to the human erythropoietin gene. Proc Natl Acad Sci USA 88:5680–5684

    Article  PubMed  CAS  Google Scholar 

  • van den Beucken T, Koritzinsky M, Wouters BG (2006) Translational control of gene expression during hypoxia. Cancer Biol Ther 5:749–755

    Article  PubMed  Google Scholar 

  • Vumbaca F, Phoenix KN, Rodriguez-Pinto D, Han DK, Claffey KP (2008) Double-stranded RNA-binding protein regulates vascular endothelial growth factor mRNA stability, translation, and breast cancer angiogenesis. Mol Cell Biol 28:772–783

    Article  PubMed  CAS  Google Scholar 

  • Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Webb JD, Coleman ML, Pugh CW (2009) Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Mol Life Sci 66:3539–3554

    Article  CAS  Google Scholar 

  • Young RM, Wang SJ, Gordan JD, Ji X, Liebhaber SA, Simon MC (2008) Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism. J Biol Chem 283:16309–16319

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina S. Levy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Levy, N.S., Levy, A.P. (2012). Adapting to Hypoxia: Lessons from Vascular Endothelial Growth Factor. In: Altenbach, A., Bernhard, J., Seckbach, J. (eds) Anoxia. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1896-8_6

Download citation

Publish with us

Policies and ethics