Skip to main content

Microbial Eukaryotes in the Marine Subsurface?

  • Chapter
  • First Online:
Anoxia

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 21))

Abstract

Marine sediments cover more than two-thirds of the Earth’s surface and have been estimated to contain as much as one-third of Earth’s prokaryotic biomass (Whitman et al. 1998). Despite this, relatively little is known about this deep biosphere, and essentially nothing is known about the presence of microbial eukaryotes (protists) in sediments deeper than a few centimeters. Through consumption of dissolved organic matter and by selective grazing in subsurface horizons where bacterial and/or archaeal numbers are high, protists may significantly impact carbon cycling in the marine subsurface. An understanding of the biogeochemical activities, composition, and temporal and spatial dynamics of marine subsurface communities is essential for accurate modeling of nutrient cycling in this vast subsurface biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR et al (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Atkins MS, Anderson OR, Wirsen CO (1998) Effect of hydrostatic pressure on the growth rate and encystment of flagellated protozoa isolated from a deep-sea hydrothermal vent and a deep shelf region. Mar Ecol Prog Ser 171:85–95

    Article  Google Scholar 

  • Atkins MS, Teske AP, Anderson OR (2000) A survey of flagellate diversity at four deep-sea hydrothermal vents in the eastern Pacific Ocean using structural and molecular approaches. J Eukaryot Microbiol 47:400–411

    Article  PubMed  CAS  Google Scholar 

  • Atkins MS, Hanna MA, Kupetsky EA, Saito MA, Taylor CD, Wirsen CO (2002) Tolerance of flagellated protists to high sulfide and metal concentrations potentially encountered at deep-sea hydrothermal vents. Mar Ecol-Prog Ser 226:63–75

    Article  CAS  Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H et al (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B Biol Sci 274:3069–3077

    Article  CAS  Google Scholar 

  • Bernhard JM, Buck KR, Farmer MA, Bowser SS (2000) The Santa Barbara Basin is a symbiosis oasis. Nature 403:77–80

    Article  PubMed  CAS  Google Scholar 

  • Biddle JF (2007) Microbial populations and processes in deep subseafloor sediments. PhD. Pennsylvania State University

    Google Scholar 

  • Biddle JF, House CH, Brenchley JE (2005) Cultivation of deeply buried microbes shows influence of geochemistry. Geochimica Et Cosmochimica Acta 69:A228

    Google Scholar 

  • Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sorensen KB, Anderson R et al (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103:3846–3851

    Article  PubMed  CAS  Google Scholar 

  • Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA 105:10583–10588

    Article  PubMed  CAS  Google Scholar 

  • Binder M, Hibbett DS (2002) Higher-level phylogenetic relationships of homobasidiomycetes (mushroom-forming fungi) inferred from four rDNA regions. Mol Phylogenet Evol 22:76–90

    Article  PubMed  CAS  Google Scholar 

  • Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600

    Article  PubMed  Google Scholar 

  • Burgaud G, Arzur D, Durand L, Cambon-Bonavita M-A, Barbier G (2010) Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microb Ecol 73:121–133

    CAS  Google Scholar 

  • Connell LB, Barrett A, Templeton A, Staudigel H (2009) Fungal diversity associated with an active deep sea volcano: Vailulu’u Seamount, Samoa. Geomicrobiol J 26:597–605

    Article  CAS  Google Scholar 

  • Council NR (1979) Hydrogen sulfide. University Park Press, Baltimore, p 183

    Google Scholar 

  • D’Hondt S, Jorgensen BB, Miller DJ (2003) Ocean Drilling Program, vol [CD-ROM]. Texas A&M University, College Station

    Google Scholar 

  • D’Hondt S, Jorgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA et al (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221

    Article  PubMed  Google Scholar 

  • Diez B, Pedros-Alio C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951

    Article  PubMed  CAS  Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, Gomez AD, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662

    Article  PubMed  CAS  Google Scholar 

  • Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13(1):172–183

    Google Scholar 

  • Fenchel T (ed) (1984) Suspended marine bacteria as a food source. Plenum, New York, pp 301–315

    Google Scholar 

  • Fenchel T (1987) Ecology of protozoa: the biology of free-living phagotrophic protists. Science Tech/Springer, Berlin, p 197

    Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, Oxford

    Google Scholar 

  • Gadanho M, Sampaio JP (2005) Occurrence and diversity of yeasts in the Mid-Atlantic Ridge hydrothermal fields near the Azores Archipelego. Microb Ecol 50:408–417

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  PubMed  CAS  Google Scholar 

  • Geiser AG, Zeng QQ, Sato M, Helvering LM, Hirano T, Turner CH (1998) Decreased bone mass and bone elasticity in mice lacking the transforming growth factor-beta1 gene. Bone 23:87–93

    Article  PubMed  CAS  Google Scholar 

  • Hawksworth DL (2002) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hibbett DS, Binder M (2002) Evolution of complex fruiting-body morphologies in homobasidiomycetes. P Roy Soc Lon B Biol Sci 269:1963–1969

    Article  CAS  Google Scholar 

  • Hyde KD, Jones EBG, Leao E, Pointing SB, Poonyth AD, Vrjmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161

    Article  Google Scholar 

  • Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A et al (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments, on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103:2815–2820

    Article  PubMed  CAS  Google Scholar 

  • Jobard M, Rasconi S, Sime-Ngando T (2010) Diversity and functions of microscopic fungi: a missing component in pelagic food webs. Aquat Sci 72:255–268

    Article  CAS  Google Scholar 

  • Kohlmeyer J (1979) Marine fungal pathogens among Ascomycetes and Deuteromycetes. Experientia 35:437–439

    Article  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic, New York

    Google Scholar 

  • Le Calvez T (2008) Third annual DOE Joint Genome Institute user meeting. U.S. Dept. of Energy, Office of Science, Walnut Creek

    Google Scholar 

  • Lee WJ, Patterson DJ (1998) Diversity and geographic distribution of free-living heterotrophic ­flagellates – analysis by PRIMER. Protist 149:229–243

    Article  Google Scholar 

  • Lipp JS, Morono Y, Inagaki F, Hinrichs KU (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994

    Article  PubMed  CAS  Google Scholar 

  • LĂ³pez-GarcĂ­a P, Lopez-Lopez A, Moreira D, Rodriguez-Valera F (2001a) Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiol Ecol 36:193–202

    Article  PubMed  Google Scholar 

  • LĂ³pez-GarcĂ­a P, Rodriguez-Valera F, Pedros-Alio C, Moreira D (2001b) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  • LĂ³pez-GarcĂ­a P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci USA 100:697–702

    Article  PubMed  Google Scholar 

  • LĂ³pez-GarcĂ­a P, Vereshchaka A, Moreira D (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost city hydrothermal field. Environ Microbiol 9:546–554

    Article  PubMed  Google Scholar 

  • Lorenz R, Molitoris HP (1997) Cultivation of fungi under simulated deep sea conditions. Mycol Res 101:1355–1365

    Article  Google Scholar 

  • Massana R, Terrado R, Forn I, Lovejoy C, Pedros-Alio C (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522

    Article  PubMed  CAS  Google Scholar 

  • Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16 S-like rRNA-coding regions. Gene 71:491–499

    Article  PubMed  CAS  Google Scholar 

  • Meister P, Prokopenko M, Skilbeck CG, Watson M, McKenzie JA (2005) In: Jorgensen BB, D’Hondt S, Miller DJ (eds) Proceeding ODP, scientific results, vol 201. ODP, College Station, pp 1–20

    Google Scholar 

  • Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from ­picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, Lopez-Garcia P (2003) Are hydrothermal vents oases for parasitic protists? Trends Parasitol 19:556–558

    Article  PubMed  CAS  Google Scholar 

  • Nagahama T (2005) Yeast biodiversity in freshwater, marine and deep-sea environments. In: The yeast handbook: biodiversity and ecophysiology of yeasts. Springer, Heidelberg

    Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Takami H, Horikoshi K (2001) Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. Antonie Van Leeuwenhoek 80:101–110

    Article  PubMed  CAS  Google Scholar 

  • Nehring S (1997) Dinoflagellate resting cysts from recent German coastal sediments. Botanica Marina 40:307–324

    Article  Google Scholar 

  • Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ, Ferdelman T et al (2005) Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436:390–394

    Article  PubMed  CAS  Google Scholar 

  • Ravindran J, Raghukumar C, Raghukumar S (2001) Fungi in Porites lutea: association with healthy and diseased corals. Dis Aquat Organ 47:219–228

    Article  PubMed  CAS  Google Scholar 

  • Richards TA, Bass D (2005) Molecular screening of free-living microbial eukaryotes: diversity and distribution using a meta-analysis. Curr Opin Microbiol 8:240–252

    Article  PubMed  CAS  Google Scholar 

  • Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ et al (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–864

    Article  PubMed  CAS  Google Scholar 

  • Schumann G, Manz W, Reitner J, Lustrino M (2004) Ancient fungal life in North Pacific eocene oceanic crust. Geomicrobiol J 21:241–246

    Article  Google Scholar 

  • Sherr EB, Sherr BF (2000) Marine microbes. An overview. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 13–46

    Google Scholar 

  • Simonato F, Campanaro S, Lauro FM, Vezzi A, D’Angelo M, Vitulo N et al (2006) Piezophilic adaptation: a genomic point of view. J Biotechnol 126:11–25

    Article  PubMed  CAS  Google Scholar 

  • Sørensen KB, Teske A (2006) Stratified communities of active Archaea in deep marine subsurface sediments. Appl Environ Microbiol 72:4596–4603

    Article  PubMed  Google Scholar 

  • Stoeck T, Epstein S (2003) Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microbiol 69:2657–2663

    Article  PubMed  CAS  Google Scholar 

  • Takishita K, Tsuchiya M, Reimer JD, Maruyama T (2006) Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles 10:165–169

    Article  PubMed  CAS  Google Scholar 

  • Takishita K, Tsuchiya M, Kawato M, Oguri K, Kitazato H, Maruyama T (2007) Genetic Diversity of Microbial Eukaryotes in Anoxic Sediment of the Saline Meromictic Lake Namako-ike (Japan): On the Detection of Anaerobic or Anoxic-tolerant Lineages of Eukaryotes. Protist 158:51–64

    Article  PubMed  CAS  Google Scholar 

  • Teske A, Sorensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2:3–18

    Article  PubMed  CAS  Google Scholar 

  • Villalba A, Reece KS, Ordas MC, Casas SM, Figueras A (2004) Perkinsosis in molluscs: a review. Aquat Living Resour 17:411–432

    Article  Google Scholar 

  • Webster G, Parkes RJ, Cragg BA, Newberry CJ, Weightman AJ, Fry JC (2006) Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 58:65–85

    Article  PubMed  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. P Natl Acad Sci USA 95:6578–6583

    Article  CAS  Google Scholar 

  • Xu J (2006) Fundamentals of fungal molecular population genetic analyses. Curr Issues Mol Biol 8:75–89

    PubMed  CAS  Google Scholar 

Download references

 Acknowledgements

Support for the deep subsurface investigation of fungi was provided by a grant from the Deep Ocean Exploration Institute, Woods Hole Oceanographic Institution (award number 32031109) and a NASA NPP fellowship administered by ORAU to JB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia P. Edgcomb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Edgcomb, V.P., Biddle, J.F. (2012). Microbial Eukaryotes in the Marine Subsurface?. In: Altenbach, A., Bernhard, J., Seckbach, J. (eds) Anoxia. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1896-8_25

Download citation

Publish with us

Policies and ethics