Skip to main content

APC/β-Catenin Deregulation in Desmoid Tumors: Important Implications for Diagnosis, Prognosis, and Therapy

  • Chapter
  • First Online:
Desmoid Tumors
  • 788 Accesses

Abstract

Understanding the molecular aberrations driving the inception and progression of desmoid tumors (DTs) is crucial to devising an effective management for these neoplasms. The APC/β-catenin pathway is known to be deregulated in DT. This chapter illuminates the molecular mechanisms of APC/β-catenin pathway signaling, elucidates the potential deregulations and mutations at play in DTs, and most importantly evaluates the possible implications of this pathway on DT diagnosis, prognosis, and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Couture J, Mitri A, Lagace R et al (2000) A germline mutation at the extreme 3′ end of the APC gene results in a severe desmoid phenotype and is associated with overexpression of beta-catenin in the desmoid tumor. Clin Genet 57:205–212

    Article  PubMed  CAS  Google Scholar 

  2. Bertario L, Russo A, Sala P et al (2001) Genotype and phenotype factors as determinants of desmoid tumors in patients with familial adenomatous polyposis. Int J Cancer 95:102–107

    Article  PubMed  CAS  Google Scholar 

  3. Amary MFC, Pauwels P, Meulemans E et al (2007) Detection of beta-catenin mutations in paraffin-embedded sporadic desmoid-type fibromatosis by mutation-specific restriction enzyme digestion (MSRED): an ancillary diagnostic tool. Am J Surg Pathol 31:1299–1309

    Article  PubMed  Google Scholar 

  4. Cheon SS, Cheah AYL, Turley S et al (2002) β-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. PNAS 99(10):6973–6978

    Article  PubMed  CAS  Google Scholar 

  5. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  PubMed  CAS  Google Scholar 

  6. Kikuchi A, Yamamoto H, Kishida S (2007) Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal 19:659–671

    Article  PubMed  CAS  Google Scholar 

  7. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851

    PubMed  CAS  Google Scholar 

  8. Kotiligam D, Lazar AJ, Pollock RE et al (2008) Desmoid tumor: a disease opportune for molecular insights. Histol Histopathol 23(1):117–126

    PubMed  CAS  Google Scholar 

  9. Tolwinski NS, Wieschaus E (2004) Rethinking WNT signaling. Trends Genet 20(4):177–181

    Article  PubMed  CAS  Google Scholar 

  10. He TC, Sparks AB, Rago C et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512

    Article  PubMed  CAS  Google Scholar 

  11. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. javascript:AL_get(this, ‘jour’, ‘Nature.’); Nature 398(6726):422–426

    Article  PubMed  CAS  Google Scholar 

  12. Crawford HC, Fingleton BM, Rudolph-Owen LA et al (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18(18):2883–2891

    Article  PubMed  CAS  Google Scholar 

  13. Conacci-Sorrell ME, Ben-Yedidia T, Shtutman M et al (2002) Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 16(16):2058–2072

    Article  PubMed  CAS  Google Scholar 

  14. Denys H, De Wever O, Nusgens B et al (2004) Invasion and MMP expression profile in desmoid tumours. Br J Cancer 90(7):1443–1449

    Article  PubMed  CAS  Google Scholar 

  15. Denys H, Jadidizadeh A, Amini Nik S et al (2004) Identification of IGFBP-6 as a significantly downregulated gene by beta-catenin in desmoid tumors. Oncogene 23(3):654–664

    Article  PubMed  CAS  Google Scholar 

  16. Lucero OM, Dawson DW, Moon RT et al (2010) A re-evaluation of the “oncogenic” nature of Wnt/beta-catenin signaling in melanoma and other cancers. Curr Oncol Rep 12(5):314–318

    Article  PubMed  CAS  Google Scholar 

  17. Bodmer WF, Bailey CJ, Bodmer J et al (1987) Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328(6131):614–616

    Article  PubMed  CAS  Google Scholar 

  18. Leppert M, Dobbs M, Scambler P et al (1987) The gene for familial polyposis coli maps to the long arm of chromosome 5. Science 238(4832):1411–1413

    Article  PubMed  CAS  Google Scholar 

  19. Goss KH, Groden J (2000) Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol 18(9):1967–1979

    PubMed  CAS  Google Scholar 

  20. Horii A, Nakatsuru S, Ichii S et al (1993) Multiple forms of the APC gene transcripts and their tissue-specific expression. Hum Mol Genet 2(3):283–287

    Article  PubMed  CAS  Google Scholar 

  21. Pyles RB, Santoro IM, Groden J et al (1998) Novel protein isoforms of the APC tumor suppressor in neural tissue. Oncogene 16(1):77–82

    Article  PubMed  CAS  Google Scholar 

  22. Rubinfeld B, Souza B, Albert I et al (1995) The APC protein and E-cadherin form similar but independent complexes with alpha catenin, beta-catenin, and plakoglobin. J Biol Chem 270(10):5549–5555

    Article  PubMed  CAS  Google Scholar 

  23. Smits R, Kielman MF, Breukel C et al (1999) Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 13:1309–1321

    Article  PubMed  CAS  Google Scholar 

  24. Morin PJ, Weeraratna AT (2003) The APC tumor suppressor pathway. In: El-Deiry WS (ed) Methods in molecular biology, vol 222: tumor suppressor genes: pathways and isolation strategies. Wafik S. El-Deiry Humana Press, Totowa

    Google Scholar 

  25. Munemitsu S, Souza B, Müller O et al (1994) The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 54(14):3676–3681

    PubMed  CAS  Google Scholar 

  26. Bienz M, Clevers H (2000) Linking colorectal cancer to Wnt signaling. Cell 103:311–320

    Article  PubMed  CAS  Google Scholar 

  27. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127(3):469–480

    Article  PubMed  CAS  Google Scholar 

  28. Kraus C, Liehr T, Hülsken J et al (1994) Localization of the human β-catenin gene (CTNNB1) to 3p21: a region implicated in tumor development. Genomics 23:273–274

    Article  Google Scholar 

  29. Lazar AJ, Hajibashi S, Lev D (2009) Desmoid tumor: from surgical extirpation to molecular dissection. Curr Opin Oncol 21(4):352–359

    Article  PubMed  CAS  Google Scholar 

  30. Gottardi CJ, Gumbiner BM (2004) Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol 167(2):339–349

    Article  PubMed  CAS  Google Scholar 

  31. Barker N (2008) The canonical Wnt/beta-catenin signalling pathway. Methods Mol Biol 468:5–15

    Article  PubMed  CAS  Google Scholar 

  32. Patton EE, Willems AR, Tyers M (1998) Combinatorial control in ubiquitin-dependent proteolysis: don’t Skp the F-box hypothesis. Trends Genet 14(6):236–243

    Article  PubMed  CAS  Google Scholar 

  33. Hecht A, Litterst CM, Huber O et al (1999) Functional characterization of multiple transactivating elements in beta-catenin, some of which interact with the TATA-binding protein in vitro. J Biol Chem 274(25):18017–18025

    Article  PubMed  CAS  Google Scholar 

  34. Hsu SC, Galceran J, Grosschedl R (1998) Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with beta-catenin. Mol Cell Biol 18(8):4807–4818

    PubMed  CAS  Google Scholar 

  35. Willert K, Jones KA (2006) Wnt signaling: is the party in the nucleus? Genes Dev 20(11):1394–1404

    Article  PubMed  CAS  Google Scholar 

  36. Aoki M, Hecht A, Kruse U et al (1999) Nuclear endpoint of Wnt signaling: neoplastic transformation induced by transactivating lymphoid-enhancing factor 1. Proc Natl Acad Sci 96:139–144

    Article  PubMed  CAS  Google Scholar 

  37. Hoppler S, Kavanagh CL (2007) Wnt signalling: variety at the core. J Cell Sci 120:385–393

    Article  PubMed  CAS  Google Scholar 

  38. Courey AJ, Jia S (2001) Transcriptional repression: the long and the short of it. Genes Dev 15(21):2786–2796

    PubMed  CAS  Google Scholar 

  39. Daniels DL, Weis WI (2005) Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol 12(4):364–371

    Article  PubMed  CAS  Google Scholar 

  40. Tejpar S, Li C, Yu C et al (2001) Tcf-3 expression and beta-catenin mediated transcriptional activation in aggressive fibromatosis (desmoid tumour). Br J Cancer 85:98–101

    Article  PubMed  CAS  Google Scholar 

  41. Morin PJ, Sparks AB, Korinek V et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275(5307):1787–1790

    Article  PubMed  CAS  Google Scholar 

  42. Kikuchi A (2003) Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci 94(3):225–229

    Article  PubMed  CAS  Google Scholar 

  43. Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17(1):45–51

    Article  PubMed  CAS  Google Scholar 

  44. Poon R, Smits R, Li C et al (2001) Cyclooxygenase-two (COX-2) modulates proliferation in aggressive fibromatosis (desmoid tumor). Oncogene 20(4):451–460

    Article  PubMed  CAS  Google Scholar 

  45. Miyoshi Y, Nagase H, Ando H et al (1992) Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1(4):229–233

    Article  PubMed  CAS  Google Scholar 

  46. Jen J, Powell SM, Papadopoulos N et al (1994) Molecular determinants of dysplasia in colorectal lesions. Cancer Res 54(21):5523–5526

    PubMed  CAS  Google Scholar 

  47. Kishida S, Yamamoto H, Ikeda S et al (1998) Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. J Biol Chem 273(18):10823–10826

    Article  PubMed  CAS  Google Scholar 

  48. Groen EJ, Roos A, Muntinghe FL et al (2008) Extra-intestinal manifestations of familial adenomatous polyposis. Ann Surg Oncol 15(9):2439–2450

    Article  PubMed  Google Scholar 

  49. Caspari R, Olschwang S, Friedl W et al (1995) Familial adenomatous polyposis: desmoid tumours and lack of ophthalmic lesions (CHRPE) associated with APC mutations beyond codon 1444. Hum Mol Genet 4(3):337–340

    Article  PubMed  CAS  Google Scholar 

  50. Spirio LN, Samowitz W, Robertson J et al (1998) Alleles of APC modulate the frequency and classes of mutations that lead to colon polyps. Nat Genet 20(4):385–388

    Article  PubMed  CAS  Google Scholar 

  51. Brensinger JD, Laken SJ, Luce MC et al (1998) Variable phenotype of familial adenomatous polyposis in pedigrees with 3′ mutation in the APC gene. Gut 43(4):548–552

    Article  PubMed  CAS  Google Scholar 

  52. Knudson AG (1996) Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 122(3):135–140

    Article  PubMed  CAS  Google Scholar 

  53. Powell SM, Zilz N, Beazer-Barclay Y et al (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359(6392):235–237

    Article  PubMed  CAS  Google Scholar 

  54. Miyaki M, Konishi M, Kikuchi-Yanoshita R et al (1994) Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res 54(11):3011–3020

    PubMed  CAS  Google Scholar 

  55. Li C, Bapat B, Alman BA (1998) Adenomatous polyposis coli gene mutation alters proliferation through its beta-catenin-regulatory function in aggressive fibromatosis (desmoid tumor). Am J Pathol 153(3):709–714

    Article  PubMed  CAS  Google Scholar 

  56. Miyaki M, Konishi M, Kikuchi-Yanoshita R et al (1993) Coexistence of somatic and germ-line mutations of APC gene in desmoid tumors from patients with familial adenomatous polyposis. Cancer Res 53(21):5079–5082

    PubMed  CAS  Google Scholar 

  57. Latchford A, Volikos E, Johnson V et al (2007) APC mutations in FAP-associated desmoid tumours are non-random but not ‘just right’. Hum Mol Genet 16(1):78–82

    Article  PubMed  CAS  Google Scholar 

  58. Miyaki M, Yamaguchi T, Iijima T et al (2008) Difference in characteristics of APC mutations between colonic and extracolonic tumors of FAP patients: variations with phenotype. Int J Cancer 122(11):2491–2497

    Article  PubMed  CAS  Google Scholar 

  59. Fletcher JA, Naeem R, Xiao S et al (1995) Chromosome aberrations in desmoid tumors. Trisomy 8 may be a predictor of recurrence. Cancer Genet Cytogenet 79(2):139–143

    Article  PubMed  CAS  Google Scholar 

  60. Bridge JA, Sreekantaiah C, Mouron B et al (1992) Clonal chromosomal abnormalities in desmoid tumors. Implications for histopathogenesis. Cancer 69(2):430–436

    Article  PubMed  CAS  Google Scholar 

  61. Tejpar S, Nollet F, Li C et al (1999) Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene 18(47):6615–6620

    Article  PubMed  CAS  Google Scholar 

  62. Sparks AB, Morin PJ, Vogelstein B et al (1998) Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 58(6):1130–1134

    PubMed  CAS  Google Scholar 

  63. Miyoshi Y, Iwao K, Nawa G et al (1998) Frequent mutations in the beta-catenin gene in desmoid tumors from patients without familial adenomatous polyposis. Oncol Res 10(11–12):591–594

    PubMed  CAS  Google Scholar 

  64. Abraham SC, Reynolds C, Lee JH et al (2002) Fibromatosis of the breast and mutations involving the APC/beta-catenin pathway. Hum Pathol 33(1):39–46

    Article  PubMed  CAS  Google Scholar 

  65. Lazar AJ, Tuvin D, Hajibashi S et al (2008) Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol 173(5):1518–1527

    Article  PubMed  CAS  Google Scholar 

  66. Dômont J, Salas S, Lacroix L et al (2010) High frequency of beta-catenin heterozygous mutations in extra-abdominal fibromatosis: a potential molecular tool for disease management. Br J Cancer 102(6):1032–1036

    Article  PubMed  Google Scholar 

  67. Polakis P, Hart M, Rubinfeld B (1999) Defects in the regulation of beta-catenin in colorectal cancer. Adv Exp Med Biol 470:23–32

    Article  PubMed  CAS  Google Scholar 

  68. Willert K, Nusse R (1998) Beta-Catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 8:95–102

    Article  PubMed  CAS  Google Scholar 

  69. Fukuchi T, Sakamoto M, Tsuda H et al (1998) Beta-catenin mutation in carcinoma of the uterine endometrium. Cancer Res 58(16):3526–3528

    PubMed  CAS  Google Scholar 

  70. Bell DA (2005) Origins and molecular pathology of ovarian cancer. Mod Pathol 18(Suppl 2):S19–S32

    Article  PubMed  CAS  Google Scholar 

  71. Oliva E, Sarrió D, Brachtel EF et al (2006) High frequency of beta-catenin mutations in borderline endometrioid tumours of the ovary. J Pathol 208(5):708–713

    Article  PubMed  CAS  Google Scholar 

  72. Irving JA, Catasús L, Gallardo A et al (2005) Synchronous endometrioid carcinomas of the uterine corpus and ovary: alterations in the beta-catenin (CTNNB1) pathway are associated with independent primary tumors and favorable prognosis. Hum Pathol 36(6):605–619

    Article  PubMed  CAS  Google Scholar 

  73. Johnson V, Lipton LR, Cummings C et al (2005) Analysis of somatic molecular changes, clinicopathological features, family history, and germline mutations in colorectal cancer families: evidence for efficient diagnosis of HNPCC and for the existence of distinct groups of non-HNPCC families. J Med Genet 42(10):756–762

    Article  PubMed  CAS  Google Scholar 

  74. Rowley PT (2005) Inherited susceptibility to colorectal cancer. Annu Rev Med 56:539–554

    Article  PubMed  CAS  Google Scholar 

  75. Alman BA, Naber SP, Terek RM et al (1995) Platelet-derived growth factor in fibrous musculoskeletal disorders: a study of pathologic tissue sections and in vitro primary cell cultures. J Orthop Res 13:67–77

    Article  PubMed  CAS  Google Scholar 

  76. Locci P, Bellocchio S, Lilli C et al (2001) Synthesis and secretion of transforming growth factor-b1 by human desmoid fibroblast cell line and its modulation by toremifene. J Interferon Cytokine Res 21:961–970

    Article  PubMed  CAS  Google Scholar 

  77. Saito T, Oda Y, Tanaka K et al (2001) Beta-catenin nuclear expression correlates with cyclin D1 overexpression in sporadic desmoid tumours. J Pathol 195(2):222–228

    Article  PubMed  CAS  Google Scholar 

  78. Amini Nik S, Hohenstein P, Jadidizadeh A et al (2005) Upregulation of wilms’ tumor gene 1 (WT1) in desmoid tumors. Int J Cancer 114:202–208

    Article  PubMed  Google Scholar 

  79. Fen Li C, Kandel C, Baliko F et al (2005) Plasminogen activator inhibitor-1 (PAI-1) modifies the formation of aggressive fibromatosis (desmoid tumor). Oncogene 24:1615–1624

    Article  PubMed  Google Scholar 

  80. Bacac M, Migliavacca E, Stehle JC et al (2006) A gene expression signature that distinguishes desmoid tumours from nodular fasciitis. J Pathol 208:543–553

    Article  PubMed  CAS  Google Scholar 

  81. Carlson JW, Fletcher CD (2007) Immunohistochemistry for beta-catenin in the differential diagnosis of spindle cell lesions: analysis of a series and review of the literature. Histopathology 51:509–514

    Article  PubMed  CAS  Google Scholar 

  82. Bhattacharya B, Dilworth HP, Iacobuzio-Donahue C et al (2005) Nuclear Beta-catenin expression distinguishes deep fibromatosis from other benign and malignant fibroblastic and myofibroblastic lesions. Am J Surg Pathol 29:653–659

    Article  PubMed  Google Scholar 

  83. Montgomery E, Torbenson MS, Kaushal M et al (2002) Beta-catenin immunohistochemistry separates mesenteric fibromatosis from gastrointestinal stromal tumor and sclerosing mesenteritis. Am J Surg Pathol 26:1296–1301

    Article  PubMed  Google Scholar 

  84. Ng TL, Gown AM, Barry TS et al (2005) Nuclear beta-catenin in mesenchymal tumors. Mod Pathol 18:68–74

    Article  PubMed  CAS  Google Scholar 

  85. Rakheja D, Molberg KH, Roberts CA et al (2005) Immunohistochemical expression of beta-catenin in solitary fibrous tumors. Arch Pathol Lab Med 129(6):776–779

    PubMed  CAS  Google Scholar 

  86. Montgomery E, Folpe AL (2005) The diagnostic value of beta-catenin immunohistochemistry. Adv Anat Pathol 12:350–356

    Article  PubMed  CAS  Google Scholar 

  87. Lepourcelet M, Chen YN, France DS et al (2004) Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5(1):91–102

    Article  PubMed  CAS  Google Scholar 

  88. Wang D, DuBois RN (2010) The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29:781–788

    Article  PubMed  CAS  Google Scholar 

  89. Emami KH, Nguyen C, Ma H et al (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription. Proc Natl Acad Sci 101(34):12682–12687

    Article  PubMed  CAS  Google Scholar 

  90. Park CH, Chang JY, Hahm ER et al (2005) Quercetin, a potent inhibitor against beta-catenin/Tcf signaling in SW480 colon cancer cells. Biochem Biophys Res Commun 328(1):227–234

    Article  PubMed  CAS  Google Scholar 

  91. Chen Z, Venkatesan AM, Dehnhardt CM et al (2009) 2,4-Diamino-quinazolines as inhibitors of beta-catenin/Tcf-4 pathway: potential treatment for colorectal cancer. Bior Med Chem Lett 19(17):4980–4983

    Article  CAS  Google Scholar 

  92. Huang SM, Mishina YM, Liu S et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620

    Article  PubMed  CAS  Google Scholar 

  93. Signoroni S, Frattini M, Negri T et al (2007) Cyclooxygenase-2 and platelet-derived growth factor receptors as potential targets in treating aggressive fibromatosis. Clin Canc Res 13(17):5034–5040

    Article  CAS  Google Scholar 

  94. Heinrich MC, McArthur GA, Demetri GD et al (2006) Clinical and molecular studies of the effect of Imatinib on advanced aggressive fibromatosis (desmoid tumor). J Clin Oncol 24(7):1195–1203

    Article  PubMed  CAS  Google Scholar 

  95. Takemaru KI, Ohmitsu M, Li FQ, Klussmann E, Scott J (eds) (2008) Protein–protein Iinteractions as new drug targets. 261 Handbook of experimental pharmacology 186. Springer, Berlin

    Google Scholar 

  96. Zhang Q, Major MB, Takanashi S et al (2007) Small-molecule synergist of the Wnt/beta-catenin signaling pathway. Proc Natl Acad Sci 104:7444–7448

    Article  PubMed  CAS  Google Scholar 

  97. Sekiya T, Nakamura T, Kazuki Y et al (2002) Overexpression of Icat induces G(2) arrest and cell death in tumor cell mutants for adenomatous polyposis coli, beta-catenin, or axin. Cancer Res 62(11):3322–3326

    PubMed  CAS  Google Scholar 

  98. Steinbach G, Lynch PM, Phillips RK et al (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342(26):1946–1952

    Article  PubMed  CAS  Google Scholar 

  99. Dufresne A, Bertucci F, Penel N et al (2010) Identification of biological factors predictive of response to imatinib mesylate in aggressive fibromatosis. Br J Cancer 103(4):482–485

    Article  PubMed  CAS  Google Scholar 

  100. Barker N, Clevers H (2006) Mining the Wnt pathway for cancer therapeutics. Nature Rev Drug Discovery 5:997–1014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Colombo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Colombo, C., Lev, D. (2012). APC/β-Catenin Deregulation in Desmoid Tumors: Important Implications for Diagnosis, Prognosis, and Therapy. In: Litchman, C. (eds) Desmoid Tumors. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1685-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1685-8_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1684-1

  • Online ISBN: 978-94-007-1685-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics