Skip to main content

Desmoid Tumors: Are They Benign or Malignant?

  • Chapter
  • First Online:
Desmoid Tumors
  • 852 Accesses

Abstract

The distinction between benign and malignant tumors is classically based on the metastatic potential of a tumor type. While desmoid tumors do not metastasize and as such are classified as benign lesions, their clinical behavior, cellular biology, and molecular etiology all share more characteristics with malignancies than benign processes. Research into these aspects of desmoid tumor biology has the potential not only to develop better treatments for desmoid tumors, but also to shed light into fundamental aspects of tumor biology that will have broad ranging applications. Its classification as a benign process could have implications hampering research, advocacy, and management progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weekes RG, McLeod RA, Reiman HM, Pritchard DJ (1985) CT of soft-tissue neoplasms. Am J Roentgenol 144:355–360

    Article  CAS  Google Scholar 

  2. Donati D, Colangeli S, Colangeli M, Di Bella C, Bertoni F (2010) Surgical treatment of grade I central chondrosarcoma. Clin Orthop Relat Res 468:581–589

    Article  PubMed  Google Scholar 

  3. Galiatsatos P, Foulkes WD (2006) Familial adenomatous polyposis. Am J Gastroenterol 101:385–398

    Article  PubMed  Google Scholar 

  4. Hosalkar HS, Fox EJ, Delaney T, Torbert JT, Ogilvie CM, Lackman RD (2006) Desmoid tumors and current status of management. Orthop Clin North Am 37:53–63

    Article  PubMed  Google Scholar 

  5. Dormans JP, Spiegel D, Meyer J et al (2001) Fibromatoses in childhood: the desmoid/fibromatosis complex. Med Pediatr Oncol 37:126–131

    Article  PubMed  CAS  Google Scholar 

  6. Alman BA, Goldberg MJ, Naber SP, Galanopoulous T, Antoniades HN, Wolfe HJ (1992) Aggressive fibromatosis. J Pediatr Orthop 12:1–10

    PubMed  CAS  Google Scholar 

  7. Bandipalliam P, Balmana J, Syngal S (2004) Comprehensive genetic and endoscopic evaluation may be necessary to distinguish sporadic versus familial adenomatous polyposis-associated abdominal desmoid tumors. Surgery 135:683–689

    Article  PubMed  Google Scholar 

  8. Benoit L, Faivre L, Cheynel N et al (2007) 3′ Mutation of the APC gene and family history of FAP in a patient with apparently sporadic desmoid tumors. J Clin Gastroenterol 41:297–300

    Article  PubMed  Google Scholar 

  9. Maher ER, Morson B, Beach R, Hodgson SV (1992) Phenotypic variation in hereditary nonpolyposis colon cancer syndrome. Association with infiltrative fibromatosis (desmoid tumor). Cancer 69:2049–2051

    Article  PubMed  CAS  Google Scholar 

  10. Gurbuz AK, Giardiello FM, Petersen GM et al (1994) Desmoid tumours in familial adenomatous polyposis. Gut 35:377–381

    Article  PubMed  CAS  Google Scholar 

  11. Eccles DM, van der Luijt R, Breukel C et al (1996) Hereditary desmoid disease due to a frameshift mutation at codon 1924 of the APC gene. Am J Hum Genet 59:1193–1201

    PubMed  CAS  Google Scholar 

  12. Scott RJ, Froggatt NJ, Trembath RC, Evans DG, Hodgson SV, Maher ER (1996) Familial infiltrative fibromatosis (desmoid tumours) (MIM135290) caused by a recurrent 3′ APC gene mutation. Hum Mol Genet 5:1921–1924

    Article  PubMed  CAS  Google Scholar 

  13. Couture J, Mitri A, Lagace R et al (2000) A germline mutation at the extreme 3′ end of the APC gene results in a severe desmoid phenotype and is associated with overexpression of beta-catenin in the desmoid tumor. Clin Genet 57:205–212

    Article  PubMed  CAS  Google Scholar 

  14. Alman BA, Pajerski ME, Diaz-Cano S, Corboy K, Wolfe HJ (1997) Aggressive fibromatosis (desmoid tumor) is a monoclonal disorder. Diagn Mol Pathol 6:98–101

    Article  PubMed  CAS  Google Scholar 

  15. Bridge JA, Sreekantaiah C, Mouron B, Neff JR, Sandberg AA, Wolman SR (1992) Clonal chromosomal abnormalities in desmoid tumors. Implications for histopathogenesis. Cancer 69:430–436

    Article  PubMed  CAS  Google Scholar 

  16. Fletcher JA, Naeem R, Xiao S, Corson JM (1995) Chromosome aberrations in desmoid tumors. Trisomy 8 may be a predictor of recurrence. Cancer Genet Cytogenet 79:139–143

    Article  PubMed  CAS  Google Scholar 

  17. Li M, Cordon-Cardo C, Gerald WL, Rosai J (1996) Desmoid fibromatosis is a clonal process. Hum Pathol 27:939–943

    Article  PubMed  CAS  Google Scholar 

  18. Li C, Bapat B, Alman BA (1998) Adenomatous polyposis coli gene mutation alters proliferation through its beta-catenin-regulatory function in aggressive fibromatosis (desmoid tumor). Am J Pathol 153:709–714

    Article  PubMed  CAS  Google Scholar 

  19. Alman BA, Li C, Pajerski ME, Diaz-Cano S, Wolfe HJ (1997) Increased beta-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am J Pathol 151:329–334

    PubMed  CAS  Google Scholar 

  20. Tejpar S, Nollet F, Li C et al (1999) Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene 18:6615–6620

    Article  PubMed  CAS  Google Scholar 

  21. Tejpar S, Li C, Yu C et al (2001) Tcf-3 expression and beta-catenin mediated transcriptional activation in aggressive fibromatosis (desmoid tumour). Br J Cancer 85:98–101

    Article  PubMed  CAS  Google Scholar 

  22. Gebert C, Hardes J, Kersting C et al (2007) Expression of beta-catenin and p53 are prognostic factors in deep aggressive fibromatosis. Histopathology 50:491–497

    Article  PubMed  CAS  Google Scholar 

  23. Rakheja D, Molberg KH, Roberts CA, Jaiswal VR (2005) Immunohistochemical expression of beta-catenin in solitary fibrous tumors. Arch Pathol Lab Med 129:776–779

    PubMed  CAS  Google Scholar 

  24. Bhattacharya B, Dilworth HP, Iacobuzio-Donahue C et al (2005) Nuclear beta-catenin expression distinguishes deep fibromatosis from other benign and malignant fibroblastic and myofibroblastic lesions. Am J Surg Pathol 29:653–659

    Article  PubMed  Google Scholar 

  25. Ng TL, Gown AM, Barry TS et al (2005) Nuclear beta-catenin in mesenchymal tumors. Mod Pathol 18:68–74

    Article  PubMed  CAS  Google Scholar 

  26. Saito T, Oda Y, Kawaguchi K et al (2002) Possible association between higher beta-catenin mRNA expression and mutated beta-catenin in sporadic desmoid tumors: real-time semiquantitative assay by TaqMan polymerase chain reaction. Lab Invest 82:97–103

    Article  PubMed  CAS  Google Scholar 

  27. Montgomery E, Lee JH, Abraham SC, Wu TT (2001) Superficial fibromatoses are genetically distinct from deep fibromatoses. Mod Pathol 14:695–701

    Article  PubMed  CAS  Google Scholar 

  28. Saito T, Oda Y, Tanaka K et al (2001) Beta-catenin nuclear expression correlates with cyclin D1 overexpression in sporadic desmoid tumours. J Pathol 195:222–228

    Article  PubMed  CAS  Google Scholar 

  29. Signoroni S, Frattini M, Negri T et al (2007) Cyclooxygenase-2 and platelet-derived growth factor receptors as potential targets in treating aggressive fibromatosis. Clin Cancer Res 13:5034–5040

    Article  PubMed  CAS  Google Scholar 

  30. Jilong Y, Jian W, Xiaoyan Z, Xiaoqiu L, Xiongzeng Z (2007) Analysis of APC/beta-catenin genes mutations and Wnt signalling pathway in desmoid-type fibromatosis. Pathology 39:319–325

    Article  PubMed  Google Scholar 

  31. Bowley E, O’Gorman DB, Gan BS (2007) Beta-catenin signaling in fibroproliferative disease. J Surg Res 138:141–150

    Article  PubMed  CAS  Google Scholar 

  32. Ferenc T, Sygut J, Kopczynski J et al (2006) Aggressive fibromatosis (desmoid tumors): definition, occurrence, pathology, diagnostic problems, clinical behavior, genetic background. Pol J Pathol 57:5–15

    PubMed  Google Scholar 

  33. Tajima S, Hironaka M, Oshikawa K et al (2006) Intrathoracic sporadic desmoid tumor with the beta-catenin gene mutation in exon 3 and activated cyclin D1. Respiration 73:558–561

    Article  PubMed  Google Scholar 

  34. Varallo VM, Gan BS, Seney S et al (2003) Beta-catenin expression in Dupuytren’s disease: potential role for cell-matrix interactions in modulating beta-catenin levels in vivo and in vitro. Oncogene 22:3680–3684

    Article  PubMed  CAS  Google Scholar 

  35. Shitoh K, Konishi F, Iijima T et al (1999) A novel case of a sporadic desmoid tumour with mutation of the beta catenin gene. J Clin Pathol 52:695–696

    Article  PubMed  CAS  Google Scholar 

  36. Miyoshi Y, Iwao K, Nawa G, Yoshikawa H, Ochi T, Nakamura Y (1998) Frequent mutations in the beta-catenin gene in desmoid tumors from patients without familial adenomatous polyposis. Oncol Res 10:591–594

    PubMed  CAS  Google Scholar 

  37. Amary MF, Pauwels P, Meulemans E et al (2007) Detection of beta-catenin mutations in paraffin-embedded sporadic desmoid-type fibromatosis by mutation-specific restriction enzyme digestion (MSRED): an ancillary diagnostic tool. Am J Surg Pathol 31:1299–1309

    Article  PubMed  Google Scholar 

  38. Carlson JW, Fletcher CD (2007) Immunohistochemistry for beta-catenin in the differential diagnosis of spindle cell lesions: analysis of a series and review of the literature. Histopathology 51:509–514

    Article  PubMed  CAS  Google Scholar 

  39. Cheon SS, Cheah AY, Turley S et al (2002) Beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci U S A 99:6973–6978

    Article  PubMed  CAS  Google Scholar 

  40. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  41. Galmozzi E, Facchetti F, La Porta CA (2006) Cancer stem cells and therapeutic perspectives. Curr Med Chem 13:603–607

    Article  PubMed  CAS  Google Scholar 

  42. Gudjonsson T, Magnusson MK (2005) Stem cell biology and the cellular pathways of carcinogenesis. Apmis 113:922–929

    Article  PubMed  Google Scholar 

  43. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902

    Article  PubMed  CAS  Google Scholar 

  44. Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells--perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  PubMed  CAS  Google Scholar 

  45. Romano G (2005) The role of adult stem cells in carcinogenesis. Drug News Perspect 18:555–559

    Article  PubMed  CAS  Google Scholar 

  46. Pierce GB, Speers WC (1988) Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res 48:1996–2004.

    PubMed  CAS  Google Scholar 

  47. Challen GA, Little MH (2006) A side order of stem cells: the SP phenotype. Stem Cells 24:3–12

    Article  PubMed  Google Scholar 

  48. Goodell MA, McKinney-Freeman S, Camargo FD (2005) Isolation and characterization of side population cells. Methods Mol Biol 290:343–352

    PubMed  Google Scholar 

  49. Hirschmann-Jax C, Foster AE, Wulf GG et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101:14228–14233

    Article  PubMed  CAS  Google Scholar 

  50. Liadaki K, Kho AT, Sanoudou D et al (2005) Side population cells isolated from different tissues share transcriptome signatures and express tissue-specific markers. Exp Cell Res 303:360–374

    Article  PubMed  CAS  Google Scholar 

  51. Alison MR (2003) Tissue-based stem cells: ABC transporter proteins take centre stage. J Pathol 200:547–550

    Article  PubMed  CAS  Google Scholar 

  52. Wu C, Wei Q, Utomo V, Nadesan P, Whetstone H, Kandel R, Wunder JS, Alman BA (2007) Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Res 67:8216–8222

    Article  PubMed  CAS  Google Scholar 

  53. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337

    Article  PubMed  CAS  Google Scholar 

  54. Wu C, Nik-Amini S, Nadesan P, Stanford WL, Alman BA (2010) Aggressive fibromatosis (desmoid tumor) is derived from mesenchymal progenitor cells. Cancer Res 70:7690–7698

    Article  PubMed  CAS  Google Scholar 

  55. Rubio R, Garcia-Castro J, Gutierrez-Aranda I et al (2010) Deficiency in p53 but not retinoblastoma induces the transformation of mesenchymal stem cells in vitro and initiates leiomyosarcoma in vivo. Cancer Res 70:4185–4194

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Alman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Alman, B. (2012). Desmoid Tumors: Are They Benign or Malignant?. In: Litchman, C. (eds) Desmoid Tumors. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1685-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1685-8_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1684-1

  • Online ISBN: 978-94-007-1685-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics