Skip to main content

Expression of Antibody in Mammalian Cells

  • Chapter
  • First Online:
Antibody Expression and Production

Part of the book series: Cell Engineering ((CEEN,volume 7))

Abstract

Despite having a reputation to be costly, mammalian cell culture processes are used to produce the majority of currently marketed recombinant biopharmaceuticals, many of which are antibodies. Historically, mammalian cells were mainly chosen for whole IgG manufacturing because of product quality requirements like e.g. glycosylation, folding and assembly of the individual chains, which make microbial expression difficult. However, during the past 2 decades, significant progress has been made in both: Speed of mammalian cell line generation and yield of the manufacturing processes, which makes mammalian systems also from a commercial point of view more and more competitive to microbial expression. The following chapter provides an overview of state of the art mammalian cell line technologies for antibody manufacturing starting from vector and selection systems over host cell lines to screening methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araki, K., Araki, M. & Yamamura, K. (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res, 25, 868–72.

    Article  PubMed  CAS  Google Scholar 

  • Arnould, S., Delenda, C., Grizot, S., Desseaux, C., Paques, F., Silva, G. H. & Smith, J. (2010) The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng Des Sel, 2011 Jan, 24(1–2), 27–31.

    Google Scholar 

  • Backliwal, G., Hildinger, M., Chenuet, S., Dejesus, M. & Wurm, F. M. (2008a) Coexpression of acidic fibroblast growth factor enhances specific productivity and antibody titers in transiently transfected HEK293 cells. N Biotechnol, 25, 162–6.

    Article  PubMed  CAS  Google Scholar 

  • Backliwal, G., Hildinger, M., Chenuet, S., Wulhfard, S., De Jesus, M. & Wurm, F. M. (2008b) Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res, 36, e96.

    Article  PubMed  Google Scholar 

  • Becker, E., Florin, L., Pfizenmaier, K. & Kaufmann, H. (2008) An XBP-1 dependent bottle-neck in production of IgG subtype antibodies in chemically defined serum-free Chinese hamster ovary (CHO) fed-batch processes. J Biotechnol, 135, 217–23.

    Article  PubMed  CAS  Google Scholar 

  • Becker, E., Florin, L., Pfizenmaier, K. & Kaufmann, H. (2010) Evaluation of a combinatorial cell engineering approach to overcome apoptotic effects in XBP-1(s) expressing cells. J Biotechnol, 146, 198–206.

    Article  PubMed  CAS  Google Scholar 

  • Benton, T., Chen, T., Mcentee, M., Fox, B., King, D., Crombie, R., Thomas, T. C. & Bebbington, C. (2002) The use of UCOE vectors in combination with a preadapted serum free, suspension cell line allows for rapid production of large quantities of protein. Cytotechnology, 38, 43–6.

    Article  PubMed  CAS  Google Scholar 

  • Bi, J. X., Buhr, P., Zeng, A. P. & Wirth, M. (2003) Human c-fos promoter mediates high-level, inducible expression in various mammalian cell lines. Biotechnol Bioeng, 81, 848–54.

    Article  PubMed  CAS  Google Scholar 

  • Birch, J. R. & Racher, A. J. (2006) Antibody production. Adv Drug Deliv Rev, 58, 671–85.

    Article  PubMed  CAS  Google Scholar 

  • Bode, J., Schlake, T., Iber, M., Schubeler, D., Seibler, J., Snezhkov, E. & Nikolaev, L. (2000) The transgeneticist’s toolbox: novel methods for the targeted modification of eukaryotic genomes. Biol Chem, 381, 801–13.

    Article  PubMed  CAS  Google Scholar 

  • Borman, A. M., Deliat, F. G. & Kean, K. M. (1994) Sequences within the poliovirus internal ribosome entry segment control viral RNA synthesis. Embo J, 13, 3149–57.

    PubMed  CAS  Google Scholar 

  • Borth, N., Mattanovich, D., Kunert, R. & Katinger, H. (2005) Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line. Biotechnol Prog, 21, 106–11.

    Article  PubMed  CAS  Google Scholar 

  • Borth, N., Zeyda, M., Kunert, R. & Katinger, H. (2000) Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol Bioeng, 71, 266–73.

    Article  PubMed  CAS  Google Scholar 

  • Brezinsky, S. C., Chiang, G. G., Szilvasi, A., Mohan, S., Shapiro, R. I., Maclean, A., Sisk, W. & Thill, G. (2003) A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods, 277, 141–55.

    Article  PubMed  CAS  Google Scholar 

  • Browne, S. M. & Al-Rubeai, M. (2007) Selection methods for high-producing mammalian cell lines. Trends Biotechnol, 25, 425–32.

    Article  PubMed  CAS  Google Scholar 

  • Cacciatore, J. J., Chasin, L. A. & Leonard, E. F. (2010) Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system. Biotechnol Adv, 28, 673–81.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, S. & Al-Rubeai, M. (2004) The selection of high-producing cell lines using flow cytometry and cell sorting. Expert Opin Biol Ther, 4, 1821–9.

    Article  PubMed  CAS  Google Scholar 

  • Cho, M. S., Yee, H. & Chan, S. (2002) Establishment of a human somatic hybrid cell line for recombinant protein production. J Biomed Sci, 9, 631–8.

    Article  PubMed  CAS  Google Scholar 

  • Choi, B. K., Bobrowicz, P., Davidson, R. C., Hamilton, S. R., Kung, D. H., Li, H., Miele, R. G., Nett, J. H., Wildt, S. & Gerngross, T. U. (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA, 100, 5022–7.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R., Schooley, K., Rasmussen, B., Thomas, J. & Reddy, P. (2000) Effect of PDI overexpression on recombinant protein secretion in CHO cells. Biotechnol Prog, 16, 736–43.

    Article  PubMed  CAS  Google Scholar 

  • Demaria, C. T., Cairns, V., Schwarz, C., Zhang, J., Guerin, M., Zuena, E., Estes, S. & Karey, K. P. (2007) Accelerated clone selection for recombinant CHO CELLS using a FACS-based high-throughput screen. Biotechnol Prog, 23, 465–72.

    Article  PubMed  CAS  Google Scholar 

  • Dinnis, D. M. & James, D. C. (2005) Engineering mammalian cell factories for improved recombinant monoclonal antibody production: lessons from nature? Biotechnol Bioeng, 91, 180–9.

    Article  PubMed  CAS  Google Scholar 

  • Durocher, Y. & Butler, M. (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol, 20, 700–7.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M. J., Hartman, S. L., Wolff, D. W., Rollins, S. A. & Squinto, S. P. (1995) Rapid expression of an anti-human C5 chimeric Fab utilizing a vector that replicates in COS and 293 cells. J Immunol Methods, 184, 123–38.

    Article  PubMed  CAS  Google Scholar 

  • Fang, J., Qian, J. J., Yi, S., Harding, T. C., Tu, G. H., Vanroey, M. & Jooss, K. (2005) Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol, 23, 584–90.

    Article  PubMed  CAS  Google Scholar 

  • Florin, L., Pegel, A., Becker, E., Hausser, A., Olayioye, M. A. & Kaufmann, H. (2009) Heterologous expression of the lipid transfer protein CERT increases therapeutic protein productivity of mammalian cells. J Biotechnol, 141, 84–90.

    Article  PubMed  CAS  Google Scholar 

  • Fukushige, S. & Sauer, B. (1992) Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc Natl Acad Sci USA, 89, 7905–9.

    Article  PubMed  CAS  Google Scholar 

  • Fussenegger, M., Bailey, J. E., Hauser, H. & Mueller, P. P. (1999) Genetic optimization of recombinant glycoprotein production by mammalian cells. Trends Biotechnol, 17, 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Fussenegger, M., Schlatter, S., Datwyler, D., Mazur, X. & Bailey, J. E. (1998) Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat Biotechnol, 16, 468–72.

    Article  PubMed  CAS  Google Scholar 

  • Geisse, S. (2009) Reflections on more than 10 years of TGE approaches. Protein Expr Purif, 64, 99–107.

    Article  PubMed  CAS  Google Scholar 

  • Geisse, S. & Fux, C. (2009) Recombinant protein production by transient gene transfer into Mammalian cells. Methods Enzymol, 463, 223–38.

    Article  PubMed  CAS  Google Scholar 

  • Gerngross, T. U. (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol, 22, 1409–14.

    Article  PubMed  CAS  Google Scholar 

  • Girard, P., Derouazi, M., Baumgartner, G., Bourgeois, M., Jordan, M., Jacko, B. & Wurm, F. M. (2002) 100-liter transient transfection. Cytotechnology, 38, 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Goswami, J., Sinskey, A. J., Steller, H., Stephanopoulos, G. N. & Wang, D. I. (1999) Apoptosis in batch cultures of Chinese hamster ovary cells. Biotechnol Bioeng, 62, 632–40.

    Article  PubMed  CAS  Google Scholar 

  • Graham, F. L., Smiley, J., Russell, W. C. & Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol, 36, 59–74.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, S. R., Bobrowicz, P., Bobrowicz, B., Davidson, R. C., Li, H., Mitchell, T., Nett, J. H., Rausch, S., Stadheim, T. A., Wischnewski, H., Wildt, S. & Gerngross, T. U. (2003) Production of complex human glycoproteins in yeast. Science, 301, 1244–6.

    Article  PubMed  CAS  Google Scholar 

  • Hanania, E. G., Fieck, A., Stevens, J., Bodzin, L. J., Palsson, B. O. & Koller, M. R. (2005) Automated in situ measurement of cell-specific antibody secretion and laser-mediated purification for rapid cloning of highly-secreting producers. Biotechnol Bioeng, 91, 872–6.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, P. & Al-Rubeai, M. (1999) Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors. J Immunol Methods, 230, 141–7.

    Article  PubMed  CAS  Google Scholar 

  • Ishaque, A. & Al-Rubeai, M. (2002) Role of vitamins in determining apoptosis and extent of suppression by bcl-2 during hybridoma cell culture. Apoptosis, 7, 231–9.

    Article  PubMed  CAS  Google Scholar 

  • Jayapal, K. P., Lian, W., Glod, F., Sherman, D. H. & Hu, W. S. (2007) Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics, 8, 229.

    Article  PubMed  Google Scholar 

  • Jones, D., Kroos, N., Anema, R., Van Montfort, B., Vooys, A., Van Der Kraats, S., Van Der Helm, E., Smits, S., Schouten, J., Brouwer, K., Lagerwerf, F., Van Berkel, P., Opstelten, D. J., Logtenberg, T. & Bout, A. (2003) High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol Prog, 19, 163–8.

    Article  PubMed  CAS  Google Scholar 

  • Jostock, T. (2009) Reducing cycle time for cell line development. Cell Line Development and Engineering Conference. Berlin, Informa.

    Google Scholar 

  • Jostock, T., Blinn, G., Renne, C., Kallen, K. J., Rose-John, S. & Mullberg, J. (1999) Immunoadhesins of interleukin-6 and the IL-6/soluble IL-6R fusion protein hyper-IL-6. J Immunol Methods, 223, 171–83.

    Article  PubMed  CAS  Google Scholar 

  • Jostock, T., Dragic, Z., Fang, J., Jooss, K., Wilms, B. & Knopf, H. P. (2010a) Combination of the 2A/furin technology with an animal component free cell line development platform process. Appl Microbiol Biotechnol, 87, 1517–24.

    Article  PubMed  CAS  Google Scholar 

  • Jostock, T., Knopf, H.-P., Wilms, B., Drori, S. & Assaraf, Y. G. A. (2010b) Evaluation and implementation of new expression technologies for enhanced CHO cell line development. Antibody Development and Production Conference. Carlsbad, CA, IBCLifeScience.

    Google Scholar 

  • Jostock, T., Mullberg, J., Ozbek, S., Atreya, R., Blinn, G., Voltz, N., Fischer, M., Neurath, M. F. & Rose-John, S. (2001) Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur J Biochem, 268, 160–7.

    Article  PubMed  CAS  Google Scholar 

  • Jostock, T., Sewalt, R., Drewello, D., Lang, S., Dennler, S., Ortlepp, M., Wichter, J., Nommay, A., Dragic, Z., Van Der Vaart, H., Wilms, B. & Knopf, H. P. (2008) Evaluation of the STAR Technology. European Biotechnology News, 7, 33–6.

    Google Scholar 

  • Jostock, T., Vanhove, M., Brepoels, E., Van Gool, R., Daukandt, M., Wehnert, A., Van Hegelsom, R., Dransfield, D., Sexton, D., Devlin, M., Ley, A., Hoogenboom, H. & Mullberg, J. (2004) Rapid generation of functional human IgG antibodies derived from Fab-on-phage display libraries. J Immunol Methods, 289, 65–80.

    Article  PubMed  CAS  Google Scholar 

  • Kaloff, C. R. & Haas, I. G. (1995) Coordination of immunoglobulin chain folding and immunoglobulin chain assembly is essential for the formation of functional IgG. Immunity, 2, 629–37.

    Article  PubMed  CAS  Google Scholar 

  • Kalwy, S., Rance, J. & Young, R. (2006) Toward more efficient protein expression: keep the message simple. Mol Biotechnol, 34, 151–6.

    Article  PubMed  CAS  Google Scholar 

  • Kantardjieff, A., Nissom, P. M., Chuah, S. H., Yusufi, F., Jacob, N. M., Mulukutla, B. C., Yap, M. & Hu, W. S. (2009) Developing genomic platforms for Chinese hamster ovary cells. Biotechnol Adv, 27, 1028–35.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, R. J., Davies, M. V., Wasley, L. C. & Michnick, D. (1991) Improved vectors for stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from EMC virus. Nucleic Acids Res, 19, 4485–90.

    Article  PubMed  CAS  Google Scholar 

  • Kennard, M. L., Goosney, D. L., Monteith, D., Roe, S., Fischer, D. & Mott, J. (2009a) Auditioning of CHO host cell lines using the artificial chromosome expression (ACE) technology. Biotechnol Bioeng, 104, 526–39.

    Article  PubMed  CAS  Google Scholar 

  • Kennard, M. L., Goosney, D. L., Monteith, D., Zhang, L., Moffat, M., Fischer, D. & Mott, J. (2009b) The generation of stable, high MAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Biotechnol Bioeng, 104, 540–53.

    Article  PubMed  CAS  Google Scholar 

  • Kenney, J. S., Gray, F., Ancel, M. H. & Dunne, J. F. (1995) Production of monoclonal antibodies using a secretion capture report web. Biotechnology (NY), 13, 787–90.

    Article  CAS  Google Scholar 

  • Kim, N. S. & Lee, G. M. (2000) Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production. Biotechnol Bioeng, 71, 184–93.

    Article  PubMed  CAS  Google Scholar 

  • Kim, N. S. & Lee, G. M. (2002a) Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3. Biotechnol Bioeng, 78, 217–28.

    Article  PubMed  CAS  Google Scholar 

  • Kim, N. S. & Lee, G. M. (2002b) Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression. J Biotechnol, 95, 237–48.

    Article  PubMed  CAS  Google Scholar 

  • Knopf, H. P. (2008) Keynote: speed to patient/market as key for success. BioPharm SCALE-UP. Geneva, Switzerland.

    Google Scholar 

  • Kwaks, T. H., Barnett, P., Hemrika, W., Siersma, T., Sewalt, R. G., Satijn, D. P., Brons, J. F., Van Blokland, R., Kwakman, P., Kruckeberg, A. L., Kelder, A. & Otte, A. P. (2003) Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat Biotechnol, 21, 553–8.

    Article  PubMed  CAS  Google Scholar 

  • Lee, G. (2008) Cell line development using a Per.C6 host cell line. Cell Line Development and Engineering Conference. IBC’s 4th Annual Cell Line Development and Engineering, June 23–24, San Diego, USA.

    Google Scholar 

  • Li, J., Menzel, C., Meier, D., Zhang, C., Dubel, S. & Jostock, T. (2007a) A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies. J Immunol Methods, 318, 113–24.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Zhang, C., Jostock, T. & Dubel, S. (2007b) Analysis of IgG heavy chain to light chain ratio with mutant Encephalomyocarditis virus internal ribosome entry site. Protein Eng Des Sel, 20, 491–6.

    Article  PubMed  CAS  Google Scholar 

  • Lindenbaum, M., Perkins, E., Csonka, E., Fleming, E., Garcia, L., Greene, A., Gung, L., Hadlaczky, G., Lee, E., Leung, J., Macdonald, N., Maxwell, A., Mills, K., Monteith, D., Perez, C. F., Shellard, J., Stewart, S., Stodola, T., Vandenborre, D., Vanderbyl, S. & Ledebur, H. C., Jr. (2004) A mammalian artificial chromosome engineering system (ACE System) applicable to biopharmaceutical protein production, transgenesis and gene-based cell therapy. Nucleic Acids Res, 32, e172.

    Article  PubMed  Google Scholar 

  • Liu, X., Constantinescu, S. N., Sun, Y., Bogan, J. S., Hirsch, D., Weinberg, R. A. & Lodish, H. F. (2000) Generation of mammalian cells stably expressing multiple genes at predetermined levels. Anal Biochem, 280, 20–8.

    Article  PubMed  CAS  Google Scholar 

  • Manz, R., Assenmacher, M., Pfluger, E., Miltenyi, S. & Radbruch, A. (1995) Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci USA, 92, 1921–5.

    Article  PubMed  CAS  Google Scholar 

  • Mastrangelo, A. J., Hardwick, J. M., Zou, S. & Betenbaugh, M. J. (2000) Part II. Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnol Bioeng, 67, 555–64.

    Article  PubMed  CAS  Google Scholar 

  • Mazur, X., Eppenberger, H. M., Bailey, J. E. & Fussenegger, M. (1999) A novel autoregulated proliferation-controlled production process using recombinant CHO cells. Biotechnol Bioeng, 65, 144–50.

    Article  PubMed  CAS  Google Scholar 

  • Meents, H., Enenkel, B., Eppenberger, H. M., Werner, R. G. & Fussenegger, M. (2002) Impact of coexpression and coamplification of sICAM and antiapoptosis determinants bcl-2/bcl-x(L) on productivity, cell survival, and mitochondria number in CHO-DG44 grown in suspension and serum-free media. Biotechnol Bioeng, 80, 706–16.

    Article  PubMed  CAS  Google Scholar 

  • Meissner, P., Pick, H., Kulangara, A., Chatellard, P., Friedrich, K. & Wurm, F. M. (2001) Transient gene expression: recombinant protein production with suspension-adapted HEK293-EBNA cells. Biotechnol Bioeng, 75, 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Montano, R. F. & Morrison, S. L. (2002) Influence of the isotype of the light chain on the properties of IgG. J Immunol, 168, 224–31.

    PubMed  CAS  Google Scholar 

  • Mutskov, V. & Felsenfeld, G. (2004) Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. Embo J, 23, 138–49.

    Article  PubMed  CAS  Google Scholar 

  • Nissom, P. M., Sanny, A., Kok, Y. J., Hiang, Y. T., Chuah, S. H., Shing, T. K., Lee, Y. Y., Wong, K. T., Hu, W. S., Sim, M. Y. & Philp, R. (2006) Transcriptome and proteome profiling to understanding the biology of high productivity CHO cells. Mol Biotechnol, 34, 125–40.

    Article  PubMed  CAS  Google Scholar 

  • Olivier, S., Jacoby, M., Brillon, C., Bouletreau, S., Mollet, T., Nerriere, O., Angel, A., Danet, S., Souttou, B., Guehenneux, F., Gauthier, L., Berthome, M., Vie, H., Beltraminelli, N. & Mehtali, M. (2010) EB66 cell line, a duck embryonic stem cell-derived substrate for the industrial production of therapeutic monoclonal antibodies with enhanced ADCC activity. MAbs, 2, 405–15.

    Google Scholar 

  • Otte, A. P., Kwaks, T. H., Van Blokland, R. J., Sewalt, R. G., Verhees, J., Klaren, V. N., Siersma, T. K., Korse, H. W., Teunissen, N. C., Botschuijver, S., Van Mer, C. & Man, S. Y. (2007) Various expression-augmenting DNA elements benefit from STAR-Select, a novel high stringency selection system for protein expression. Biotechnol Prog, 23, 801–7.

    PubMed  CAS  Google Scholar 

  • Oumard, A., Qiao, J., Jostock, T., Li, J. & Bode, J. (2006) Recommended method for chromosome exploitation: RMCE-based cassette-exchange systems in animal cell biotechnology. Cytotechnology, 50, 93–108.

    Article  PubMed  CAS  Google Scholar 

  • O’gorman, S., Fox, D. T. & Wahl, G. M. (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science, 251, 1351–5.

    Article  PubMed  Google Scholar 

  • Pichler, J., Galosy, S., Mott, J. & Borth, N. (2011) Selection of CHO host cell subclones with increased specific antibody production rates by repeated cycles of transient transfection and cell sorting. Biotechnol Bioeng, 108(2), 386–94.

    Google Scholar 

  • Porter, A. J., Dickson, A. J. & Racher, A. J. (2010a) Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: realizing the potential in bioreactors. Biotechnol Prog, 26, 1446–54.

    Article  PubMed  CAS  Google Scholar 

  • Porter, A. J., Racher, A. J., Preziosi, R. & Dickson, A. J. (2010b) Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: improving the efficiency of cell line generation. Biotechnol Prog, 26, 1455–64.

    Article  PubMed  CAS  Google Scholar 

  • Porteus, M. H. & Carroll, D. (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol, 23, 967–73.

    Article  PubMed  CAS  Google Scholar 

  • Powell, K. T. & Weaver, J. C. (1990) Gel microdroplets and flow cytometry: rapid determination of antibody secretion by individual cells within a cell population. Biotechnology (NY), 8, 333–7.

    Article  CAS  Google Scholar 

  • Puck, T. T. (1958) Genetics of somatic mammalian cells. J Exp Med, 108, 945–55.

    Article  PubMed  CAS  Google Scholar 

  • Rose, T., Winkler, K., Brundke, E., Jordan, I. & Sandig, V. (2005) Alternative Strategies and new cell lines for high-level production of biopharmaceuticals. IN Knäblein, J., (Ed.) Modern Biopharmaceuticals. Wiley-VCH, New York, NY.

    Google Scholar 

  • Santiago, Y., Chan, E., Liu, P. Q., Orlando, S., Zhang, L., Urnov, F. D., Holmes, M. C., Guschin, D., Waite, A., Miller, J. C., Rebar, E. J., Gregory, P. D., Klug, A. & Collingwood, T. N. (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA, 105, 5809–14.

    Article  PubMed  CAS  Google Scholar 

  • Schiedner, G., Hertel, S., Bialek, C., Kewes, H., Waschutza, G. & Volpers, C. (2008) Efficient and reproducible generation of high-expressing, stable human cell lines without need for antibiotic selection. BMC Biotechnol, 8, 13.

    Article  PubMed  Google Scholar 

  • Schlatter, S., Stansfield, S. H., Dinnis, D. M., Racher, A. J., Birch, J. R. & James, D. C. (2005) On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol Prog, 21, 122–33.

    Article  PubMed  CAS  Google Scholar 

  • Seibler, J., Schubeler, D., Fiering, S., Groudine, M. & Bode, J. (1998) DNA cassette exchange in ES cells mediated by Flp recombinase: an efficient strategy for repeated modification of tagged loci by marker-free constructs. Biochemistry, 37, 6229–34.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, G., Morse, S., Ararat, M. & Graham, F. L. (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. Faseb J, 16, 869–71.

    PubMed  CAS  Google Scholar 

  • Simmons, L. C., Reilly, D., Klimowski, L., Raju, T. S., Meng, G., Sims, P., Hong, K., Shields, R. L., Damico, L. A., Rancatore, P. & Yansura, D. G. (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods, 263, 133–47.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, N. H., Singh, R. P., Perani, A., Goldenzon, C. & Al-Rubeai, M. (1998) In hybridoma cultures, deprivation of any single amino acid leads to apoptotic death, which is suppressed by the expression of the bcl-2 gene. Biotechnol Bioeng, 59, 90–8.

    Article  PubMed  CAS  Google Scholar 

  • Sleiman, R. J., Gray, P. P., Mccall, M. N., Codamo, J. & Sunstrom, N. A. (2008) Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnol Bioeng, 99, 578–87.

    Article  PubMed  CAS  Google Scholar 

  • Suen, K. F., Turner, M. S., Gao, F., Liu, B., Althage, A., Slavin, A., Ou, W., Zuo, E., Eckart, M., Ogawa, T., Yamada, M., Tuntland, T., Harris, J. L. & Trauger, J. W. (2010) Transient expression of an IL-23R extracellular domain Fc fusion protein in CHO vs. HEK cells results in improved plasma exposure. Protein Expr Purif, 71, 96–102.

    Article  PubMed  CAS  Google Scholar 

  • Umana, P., Jean-Mairet, J., Moudry, R., Amstutz, H. & Bailey, J. E. (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol, 17, 176–80.

    Article  PubMed  CAS  Google Scholar 

  • Urlaub, G. & Chasin, L. A. (1980) Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci USA, 77, 4216–20.

    Article  PubMed  CAS  Google Scholar 

  • Urlaub, G., Kas, E., Carothers, A. M. & Chasin, L. A. (1983) Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells. Cell, 33, 405–12.

    Article  PubMed  CAS  Google Scholar 

  • Van Blokland, H. J., Kwaks, T. H., Sewalt, R. G., Verhees, J. A., Klaren, V. N., Siersma, T. K., Korse, J. W., Teunissen, N. C., Botschuijver, S., Van Mer, C., Man, S. Y. & Otte, A. P. (2007) A novel, high stringency selection system allows screening of few clones for high protein expression. J Biotechnol, 128, 237–45.

    Article  PubMed  Google Scholar 

  • Van Craenenbroeck, K., Vanhoenacker, P. & Haegeman, G. (2000) Episomal vectors for gene expression in mammalian cells. Eur J Biochem, 267, 5665–78.

    Article  PubMed  Google Scholar 

  • Van De Goor, J. (2004) Improvement of industrial cell culture processes by caspase-9 dominant negative and other apoptotic inhibitors. IN Al-Rubeai, M., Fussenegger, M., (Eds.) Cell Engineering. Kluwer Academic Publishers, Dodrecht.

    Google Scholar 

  • Wlaschin, K. F., Seth, G. & Hu, W. S. (2006) Toward genomic cell culture engineering. Cytotechnology, 50, 121–40.

    Article  PubMed  CAS  Google Scholar 

  • Wurm, F. M. (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol, 22, 1393–8.

    Article  PubMed  CAS  Google Scholar 

  • Yamane-Ohnuki, N., Kinoshita, S., Inoue-Urakubo, M., Kusunoki, M., Iida, S., Nakano, R., Wakitani, M., Niwa, R., Sakurada, M., Uchida, K., Shitara, K. & Satoh, M. (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng, 87, 614–22.

    Article  PubMed  CAS  Google Scholar 

  • Yamane-Ohnuki, N., Yamano, K. & Satoh, M. (2008) Biallelic gene knockouts in Chinese hamster ovary cells. Methods Mol Biol, 435, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Yee, J. C., De Leon Gatti, M., Philp, R. J., Yap, M. & Hu, W. S. (2008) Genomic and proteomic exploration of CHO and hybridoma cells under sodium butyrate treatment. Biotechnol Bioeng, 99, 1186–204.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Hans-Peter Knopf and Burkhard Wilms for their help and for proof-reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Jostock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jostock, T. (2011). Expression of Antibody in Mammalian Cells. In: Al-Rubeai, M. (eds) Antibody Expression and Production. Cell Engineering, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1257-7_1

Download citation

Publish with us

Policies and ethics