Skip to main content

Nanosized Drug Delivery Vectors and the Reticuloendothelial System

  • Chapter
  • First Online:
Intracellular Delivery

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 5))

Abstract

Nanomaterials have potential as drug delivery vectors that can improve the chemical stability and pharmacokinetic profile of small molecule drugs or improve drug uptake into solid tumours. However, one consequence of the use of nanosized drug delivery vectors is their potential recognition by tissue macrophages and accumulation in organs of the reticuloendothelial system (RES). While in some instances the uptake of drug loaded nanomaterials or ‘nanomedicines’ into organs of the RES is favoured, in most instances uptake into the RES can limit systemic exposure of the nanomedicine and limit therapeutic utility. Hence, this section discusses ways in which the RES uptake of nanomedicines can either be promoted or inhibited. Specifically, the effect of various physicochemical properties and presence or absence of key RES ‘recognition ligands’ on RES uptake are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

RES:

Reticuloendothelial system

PAMAM:

Polyamidoamine

PEG:

Polyethylene glycol

DPPC:

Dipalmitoyl phosphatidylglycerol

Succinate:

Succinic acid

Ph-sulphonate:

Benzene sulphonate

Ph-disulphonate:

Benzene disulphonate

TIM:

T cell Ig domain and mucin domain

NPC:

Non-parenchymal cell

HPI:

Hydrogenated phosphatidylinositol

DPPG:

1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol)

DAB:

Diaminobutane

Gd-DAB:

Gadolinium conjugated diaminobutane dendrimer

HLA-DR:

Human leukocyte antigen DR

BAI:

Brain specific angiogenesis inhibitor

GM1:

Monosialoganglioside GM1

DPPC:

1,2-dipalmitoyl-sn-glycero-3-phosphocholine

DSPC:

L-alpha-phosphatidylcholine distearoyl

DSPG:

L-alpha-phosphatidyl-DL-glycerol-distearoyl

References

  • A. Agarwal, H. Kandpal, H.P. Gupta, N.B. Singh, C.M. Gupta, Tuftsin-bearing liposomes as rifampin vehicles in treatment of tuberculosis in mice, Antimicrobial Agents and Chemotherapy, 38 (1994) 588–593.

    PubMed  CAS  Google Scholar 

  • H.B. Agashe, A.K. Babbar, S. Jain, R.K. Sharma, A.K. Mishra, A. Asthana, M. Garg, T. Dutta, N.K. Jain, Investigations on biodiostribution of technetium-99 m-labelled carbohydrate-coated poly (propylene imine) dendrimers, Nanomedicine: Nanotechnology, Biology and Medicine, 3 (2007) 120–127.

    Article  CAS  Google Scholar 

  • W.T. Al Jamal, K.T. Al Jamal, A. Cakebread, J.M. Halket, K. Kostarelos, Blood circulation and tissue biodistribution of lipid-quantum dot (L-QD) hybrid vesicles intravenously administered in mice, Bioconjugate Chemistry, 20 (2009) 1696–1702.

    Article  PubMed  CAS  Google Scholar 

  • T.M. Allen, G.A. Austin, A. Chonn, L. Lin, K.C. Lee, Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size, Biochimica et Biophysica Acta, 1061 (1991a) 56–64.

    Article  PubMed  CAS  Google Scholar 

  • T.M. Allen, C. Hansen, F. Martin, C. Redemann, A. Yau-Young, Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half lives in vivo, Biochimica et Biophysica Acta, 1066 (1991b) 29–36.

    Article  PubMed  CAS  Google Scholar 

  • B.J. Boyd, L.M. Kaminskas, P. Karellas, G. Krippner, R. Lessene, C.J.H. Porter, Cationic poly-L-lysine dendrimers: Pharmacokinetics, biodistribution and evidence for metabolism and bioresorption after intravenous administration in rats., Molecular Pharmaceutics, 3 (2006) 614–627.

    Article  PubMed  CAS  Google Scholar 

  • I. Dufresne, A. Desormeaux, J. Bestman-Smith, P. Gourde, M.J. Tremblay, M.G. Bergeron, Targeting lymph nodes with liposome bearing anti-HLA-DR-Fab’ fragments, Biochimica et Biophysica Acta, 1421 (1999) 284–294.

    Article  PubMed  CAS  Google Scholar 

  • T. Dutta, M. Garg, N.K. Jain, targeting of efavirenz loaded tuftsin conjugated poly(propyleneimine) dendrimers to HIV infected macrophages in vitro, European Journal of Pharmaceutical Sciences, 34 (2008) 181–189.

    Article  PubMed  CAS  Google Scholar 

  • A. Egorova, A. Kiselev, M. Hakli, M. Ruponen, V. Baranov, A. Urtti, Chemokine-derived peptides as carriers for gene delivery to CXCR4 expressing cells, Journal of Gene Medicine, 11 (2009) 772–781.

    Article  PubMed  CAS  Google Scholar 

  • A.A. Gabizon, Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes, Cancer Research, 52 (1992) 891–896.

    PubMed  CAS  Google Scholar 

  • A. Gabizon, D. Papahadjopoulos, Liposome frmulations with prolonged circulation time in blood and enhanced uptake by tumors, Proceedings of the National Academy of Science USA, 85 (1988) 6949–6953.

    Article  CAS  Google Scholar 

  • A. Gabizon, D. Papahadjopoulos, The role of surface charge and hydrophilic groups on liposome clearance in vivo, Biochimica et Biophysica Acta, 1103 (1992) 94–100.

    Article  PubMed  CAS  Google Scholar 

  • A. Gabizon, R. Shiota, D. Papahadjopoulos, Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times, Journal of the National Cancer Institute, 81 (1989) 1484–1488.

    Article  PubMed  CAS  Google Scholar 

  • A. Gabizon, D.C. Price, J. Huberty, R.S. Bresalier, D. Papahadjopoulos, Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors: biodistribution and imaging studies, Cancer Research, 50 (1990) 6371–6378.

    PubMed  CAS  Google Scholar 

  • J.M. Irache, H.H. Salman, C. Gamazo, S. Espuelas, Mannose-targeted systems for the delivery of therapeutics, Expert Opinion in Drug Delivery, 5 (2008) 703–724.

    Article  CAS  Google Scholar 

  • S.K. Jain, Y. Gupta, A. Jain, A.R. Saxena, P. Khare, A. Jain, Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery, Nanomedicine, 4 (2008) 41–48.

    PubMed  CAS  Google Scholar 

  • L.M. Kaminskas, B.J. Boyd, P. Karellas, S.A. Henderson, M.P. Giannis, G. Krippner, C.J. Porter, Impact of surface derivatisation of poly-L-lysine dendrimers with anionic arylsulphonate or succinate groups on intravenous pharmacokinetics and disposition, Molecular Pharmaceutics, 4 (2007) 949–961.

    Article  PubMed  CAS  Google Scholar 

  • L.M. Kaminskas, B.J. Boyd, P. Karellas, G.Y. Krippner, R. Lessene, B. Kelly, C.J.H. Porter, The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly-L-lysine dendrimers, Molecular Pharmaceutics, 5 (2008) 449–463.

    Article  PubMed  CAS  Google Scholar 

  • L.M. Kaminskas, B. Kelly, V. McLeod, B.J. Boyd, G.Y. Krippner, E.D. Williams, C.J.H. Porter, Pharmacokinetics and tumour disposition of PEGylated methotrexate conjugated poly-L-lysine dendrimers, Molecular Pharmaceutics, 6 (2009a) 1190–1204.

    Article  PubMed  CAS  Google Scholar 

  • L.M. Kaminskas, J. Kota, V.M. McLeod, B.D. Kelly, P. Karellas, C.J.H. Porter, PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats, Journal of Controlled Release, 140 (2009b) 108–116.

    Article  PubMed  CAS  Google Scholar 

  • C.D. Kaur, M.H. Nahar, N.K. Jain, Lymphatic targeting of zidovudine using surface-engineered liposomes, Journal of Drug Targeting, 16 (2008) 798–805.

    Article  PubMed  CAS  Google Scholar 

  • S. Kawakami, J. Wong, A. Sato, Y. Hattori, F. Yamashita, M. Hashida, Biodistribution characteristics of mannosylated, fucosylated and galactosylated liposomes in mice, Biochimica et Biophysica Acta, 1524 (2000) 258–265.

    PubMed  CAS  Google Scholar 

  • S.S. Kim, C. Ye, P. Kumar, I. Chiu, S. Subramanya, P. Shankar, N. Manjunath, Targeted delivery of siRNA to macrophages for anti-inflammatory treatment, Molecular Therapeutics, 18 (2010) 993–1001.

    Article  CAS  Google Scholar 

  • H. Kobayashi, S. Kawamoto, T. Saga, N. Sato, A. Hiraga, J. Konishi, K. Togashi, M.W. Brechbiel, Micro-MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: reference to pharmacokinetic properties of dendrimer-based MR contrast agents, Journal of Magnetic Resonance Imaging, 14 (2001a) 705–713.

    Article  PubMed  CAS  Google Scholar 

  • H. Kobayashi, S. Kawamoto, T. Saga, N. Sato, A. Hiraga, T. Ishimori, Y. Akita, M.H. Mamede, J. Konishi, K. Togashi, Novel liver macromolecular MR contrast agent with a polypropylenimine diaminobutyl dendrimer core: Comparison to the vascular MR contrast agent with the polyamidoamine dendrimer core, Magnetic Resonance in Medicine, 46 (2001b) 795–802.

    Article  PubMed  CAS  Google Scholar 

  • H. Kobayashi, S. Kawamoto, P.L. Choyke, N. Sato, M.V. Knopp, R.A. Star, T.A. Waldmann, Y. Tagaya, M.W. Brechbiel, Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography, Magnetic Resonance in Medicine, 50 (2003) 758–766.

    Article  PubMed  CAS  Google Scholar 

  • H. Kobayashi, S. Kawamoto, M. Bernardo, M.W. Brechbiel, M.V. Knopp, P.L. Choyke, Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging, Journal of Controlled Release, 111 (2006) 343–351.

    Article  PubMed  CAS  Google Scholar 

  • D.C. Litzinger, A.M. Buiting, N. Van Rooijen, L. Huang, Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes, Biochimica et Biophysica Acta, 1190 (1994) 99–107.

    Article  PubMed  CAS  Google Scholar 

  • F. Liu, D. Liu, Serum independent liposome uptake by mouse liver, Biochimica et Biophysica Acta, 1278 (1996) 5–11.

    Article  PubMed  Google Scholar 

  • D. Liu, F. Liu, Y.K. Song, Recognition and clearance of liposomes containing phosphatidylserine are mediated by serum opsonin, Biochimica et Biophysica Acta, 1235 (1995a) 140–146.

    Article  PubMed  Google Scholar 

  • D. Liu, F. Liu, Y.K. Song, Monosialoganglioside GM1 shortens the blood circulation of liposomes in rats, Pharmaceutical Research, 12 (1995b) 508–512.

    Article  PubMed  CAS  Google Scholar 

  • S.M. Moghimi, Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers, Biochimica et Biophysica Acta, 1590 (2002) 131–139.

    Article  PubMed  CAS  Google Scholar 

  • K. Morikawa, R. Nayar, I.J. Fidler, In vitro activation of tumoricidal properties in mouse ­macrophages using the chemotactic peptide N-formyl-methionyl-phenylalanine (FMLP) incorporated in liposomes, Cancer Immunology and Immunotherapy, 27 (1988) 1–6.

    PubMed  CAS  Google Scholar 

  • R. Mounzer, P. Shakarin, X. Papademetris, T. Constable, N.H. Ruddle, T.M. Fahmy, Dynamic imaging of lymphatic vessles and lymph nodes using a bimodal nanoparticulate contrast agent, Lymphatic Research and Biology, 5 (2007) 151–158.

    Article  PubMed  Google Scholar 

  • A. Nag, P.C. Ghosh, Assessment of targeting potential of galactosylated and mannosylated sterically stabilized liposomes to different cell types of mouse liver, Journal of Drug Targeting, 6 (1999) 427–438.

    Article  PubMed  CAS  Google Scholar 

  • N. Nimje, A. Agarwal, G.K. Saraogi, N. Lariya, G. Rai, H. Agarwal, G.P. Agarwal, Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting, Journal of Drug Targeting, 17 (2009) 777–787.

    Article  PubMed  CAS  Google Scholar 

  • N. Oku, Y. Namba, S. Okada, Tumor accumulation of novel RES-avoiding liposomes, Biochimica et Biophysica Acta, 1126 (1992) 255–260.

    PubMed  CAS  Google Scholar 

  • C. Oussoren, G. Storm, Lymphatic uptake and biodistributions of liposomes after subcutaneous injection: III. influence of surface modification with poly(ethyleneglycol), Pharmaceutical Research, 14 (1997) 1479–1484.

    Article  PubMed  CAS  Google Scholar 

  • C. Oussoren, G. Storm, Liposomes to target the lymphatics by subcutaneous administration, Advanced Drug Delivery Reviews, 50 (2001) 143–156.

    Article  PubMed  CAS  Google Scholar 

  • P.C. Rensen, J.C. Gras, E.K. Lindfors, K.W. van Dijk, J.W. Jukema, T.J. van Berkel, E.A. Biessen, Selective targeting of liposomes to macrophages using a ligand with high affinity for the macrophage scavenger receptor class A, Current Drug Discovery Technologies, 3 (2006) 135–144.

    Article  PubMed  CAS  Google Scholar 

  • H.H. Spanjer, M. van Galen, F.H. Roerdink, J. Regts, G.L. Scherphof, Intrahepatic distribution of small unilamellar liposomes as a function of liposome lipid composition, Biochimica et Biophysica Acta, 863 (1986) 224–230.

    Article  PubMed  CAS  Google Scholar 

  • L. Thiele, J.E. Deiederichs, R. Reszka, H.P. Merkle, E. Walter, Competitive adsorption of serum proteins at microparticles affects phagocytosis by dendritic cells, Biomaterials, 24 (2003) 1409–1418.

    Article  PubMed  CAS  Google Scholar 

  • S.P. Vyas, Y.K. Katare, V. Mishra, V. Sihorkar, Ligand directed macrophage targeting of amphotericin B loaded liposomes, International Journal of Pharmaceutics, 210 (2000) 1–14.

    Article  PubMed  CAS  Google Scholar 

  • L. Wan, X. Zhang, S. Pooyan, M.S. Palombo, M.J. Leibowitz, S. Stein, P.J. Sinko, Optimizing size and copy number for PEG-fMLF (N-formyl-methionyl-leucyl-phenylalanine) nanocarrier uptake by macrophages, Bioconjugate Chemistry, 19 (2008) 28–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben J. Boyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kaminskas, L.M., Boyd, B.J. (2011). Nanosized Drug Delivery Vectors and the Reticuloendothelial System. In: Prokop, A. (eds) Intracellular Delivery. Fundamental Biomedical Technologies, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1248-5_6

Download citation

Publish with us

Policies and ethics