Skip to main content

Genome-wide Molecular Approaches in Plants: From Structure to Function

  • Chapter
Plant Breeding

Abstract

Advent of technologies capable of creating ‘genome map’ even without knowledge of the phenotype or a product of a gene has tremendously improved our capability to comprehend genomes. Large fragments of DNA (> 100 kb) can be cloned in YAC (yeast artificial chromosome), BAC (bacterial artificial chromosome) and PAC (PI-derived artificial chromosome) vectors, which can be aligned to chromosomes with the help of DNA markers. Clones of contigs can be used to prepare shotgun sub-clones to generate sequence of the entire genome of organisms. Such an approach has been successfully used for Arabidopsis genome sequencing, and the International Rice Genome Sequencing Programme has also adopted the same strategy. Another approach involves sequencing the shotgun clones of the entire genome, which can then be assembled by computation. Simultaneously, progress is being made in the functional genomics of plants with more than a million ESTs (expressed sequence tags) available in databases and expression chips representing thousands of genes being put to test. The challenge for the future would be to define the function of genes and give them a place in the regulatory network of the cell. Gene knockouts and gene tags would prove to be of significant value as also computational biology. These developments should eventually pave the way not only for discovery of novel genes but also help in precision breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barry, G. F. 2001. The use of the Monsanto draft rice genome sequence in research. Plant Physiol., 125: 1164–1165.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen J. L. 2000. Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell, 12: 1021–1029.

    PubMed  CAS  Google Scholar 

  • Blanc, G., Barakat A., Guyot R., Cooke R. and Delseny M. 2000. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell, 12: 1093–1101.

    PubMed  CAS  Google Scholar 

  • Botstein D., White R. L., Skolnick M. and Davis R. W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet., 32: 314–331.

    PubMed  CAS  Google Scholar 

  • Brent R. 2000. Genomic biology. Cell, 100: 169–183.

    Article  PubMed  CAS  Google Scholar 

  • Brookes A. J. 1999. The essence of SNPs. Gene, 234: 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Brown P. O. and Botstein D. 1999. Exploring the new world of the genome with DNA microarrys. Nat. Genet. Suppl., 21: 33–37.

    Article  CAS  Google Scholar 

  • Burke D. T., Carle G. F. and Olson M. V. 1987. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science, 236: 806–812.

    Article  PubMed  CAS  Google Scholar 

  • Chin H. G., Choe M. S., Lee S. H., Park S. U., Koo J. C., Kim N. Y., Lee J. J., Oh B. G., Yi G. H., Kim S. C., Choi H. C., Cho M. J. and Han C. 1999. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J., 19: 615–623.

    Article  PubMed  CAS  Google Scholar 

  • Cho Y. G., McCouch S. R., Kniprer M., Kang M. R., Pot J., Groenen J. T. M. and Lun E. 1998. Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L. ). Theor. Appl. Genet., 97: 370–380.

    Article  CAS  Google Scholar 

  • Chory J., Ecker J. R., Briggs S., Caboche M., Corruzi G. M., Cook D., Dangl J., Grant S., Guerinot M. L., Henikoff S., Martienssen R., Okada K., Raikhel N. V., Somerville C. R. and Weigel D. 2000. Functional genomics and the virtual plant. A blueprint for understanding how plants are built and how to improve them. Plant Physiol., 123: 423–425.

    Article  PubMed  CAS  Google Scholar 

  • Delseny M., Salses J., Cooke R., Sallaud C., Regad F., Lagoda P., Guiderdoni E., Ventelon M., Brugidou C. and Ghesquihre A. 2001. Rice genomics: present and future. Plant Physiol. Biochem., 39: 323–334.

    Article  Google Scholar 

  • Devos K. M., Beales J., Nagamura Y. and Sasaki T. 1999. Arabidopsis-rice: will colinearity allow gene prediction across the eudicot-monocot divide? Genome Research, 9: 825–829.

    Article  PubMed  CAS  Google Scholar 

  • Duggan D. J., Bittner M., Chen Y., Meltzer P. and Trent J. M. 1999. Expression profiling using cDNA microarrays. Nat. Genet. Suppl., 21: 10–14.

    Article  CAS  Google Scholar 

  • Fischer K. S., Barton J., Khush G. S., Leung H. and Cantrell R. 2000. Collaborations in rice. Science, 290: 279–280.

    Article  PubMed  CAS  Google Scholar 

  • Fransz P., Armstrong S., Alonso-Blanco C., Fischer T. C., Torres-Ruiz R. A. and Jones G. 1998. Cytogenetics for the model system Arabidopsis thaliana. Plant J., 13: 867–876.

    Article  PubMed  CAS  Google Scholar 

  • Friedman N. and Meldrum D. 1998. Capillary tube resistive thermal cycling. Anal. Chem., 70: 2997–3002.

    Article  PubMed  CAS  Google Scholar 

  • Fukui K. and Ohmido N. 2000. Rice genome research: An alternative approach based on molecular cytology. In: Genomes, (ed. ) J. P. Gustafson, Kluwer Acedemic/Plenum Publishers, New York, pp. 109–121.

    Chapter  Google Scholar 

  • Gale M. D. and Devos K. M. 1998. Comparitive genetics in the grasses. Proc. Natl. Acad. Sci., USA, 95: 1971–1974.

    CAS  Google Scholar 

  • Gerstein M. and Jansen R. 2000. The current excitement in bioinformatics-analysis of whole-genome expression data: how does it relate to protein structure and function? Curr. Opin. Struct. Biol., 10: 574–584.

    Article  PubMed  CAS  Google Scholar 

  • Gupta P. K. 2000. Chromosome and genome research in plants: some recent developments. The Nucleus, 43: 94–113.

    Google Scholar 

  • Harushima Y., Yano M., Shomura A., Sato M., Shimano T., Kuboki Y., Yamamoto T., Lin S. Y., Antonio B. A., Parco A., Kajiya H., Huang N., Yamamoto K., Nagamura Y., Kurata N., Khush G. S. and Sasaki T. 1998. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 148: 479–494.

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison J. S. 2000. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell, 12: 617–635.

    PubMed  CAS  Google Scholar 

  • Hieter P. and Boguski M. 1997. Functional genomics: It’s all how you read it. Science, 278: 601–602.

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H. 1999. Retrotransposon of rice as a tool for forward and reverse genetics. In: Molecular Biology of Rice, (ed. ) K. Shimamoto. Springer, Tokyo, pp. 43–58.

    Google Scholar 

  • Hunkapiller T., Kaiser R. J., Koop B. F. and Hood L. 1991. Large-scale and automated DNA sequence determination. Science, 254: 59–67.

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium. 2000. Initial sequencing and analysis of the human genome. Nature, 409: 860–921.

    Google Scholar 

  • Ioannou P. A., Amemiya C. T., Games J., Kroisel P. M., Shizuya H., Chen C., Batzer M. A. and De Jong P. J. 1994. A new bacteriophage Pl-derived vector for the propagation of large human DNA fragments. Nat. Genet., 6: 84–89.

    Article  PubMed  CAS  Google Scholar 

  • Jeon J. S., Lee S., Jung K. H., Jun S. H., Jeong D. H., Lee J., Kim C., Jang S., Yang K., Nam J., An K., Han M. J., Sung R. J., Choi H. S., Yu J. W., Choi J. H., Cho S. Y., Cha S. S., Kim S. I. and An G. 2000. T-DNA insertional mutagenesis for functional genomics in rice. Plant J., 22: 561–570.

    Article  PubMed  CAS  Google Scholar 

  • Krysan P. J., Young J. C. and Sussman M. R. 1999. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell, 11: 2283–2290.

    PubMed  CAS  Google Scholar 

  • Kurata N., Umehara Y., Tanoue H. and Sasaki T. 1997. Physical mapping of the rice genome with YAC clones. Plant Mol. Biol., 35: 101–113.

    Article  PubMed  CAS  Google Scholar 

  • Lander E. S. and Weinberg A. 2000. Genomics: journey to the center of biology. Science, 287: 1777–1782.

    Article  PubMed  CAS  Google Scholar 

  • Lee L. G., Spurgeon S. L., Heiner C. R., Benson S. C., Rosenblum B. B., Menchen S. M., Graham R. J., Constantinescu A., Upadhya K. G. and Cassel J. M. 1997. New energy transfer dyes for DNA sequencing. Nucleic Acids Res., 25: 2816–2822.

    Article  PubMed  CAS  Google Scholar 

  • Lemieux B., Aharoni A. and Schena M. 1998. Overview of DNA chip technology. Mol. Breed., 4: 277–289.

    Article  CAS  Google Scholar 

  • Leung J., Bouvier-Dur and M., Morris P. C., Guerrier D., Chefdor F. and Giraudat J. 1994. Arabidopsis ABA response gene ABI1: features of a calcium-modualated protein phosphatase. Science, 264: 1448–1452.

    Article  PubMed  CAS  Google Scholar 

  • Lewis S., Ashburner M. and Reese M. G. 2000. Annotating eukaryote genomes. Curr. Opin. Struct. Biol., 10: 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Lukowitz W., Gillmor C. S. and Scheible W. R. 2000. Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol., 123: 795–805.

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari S. C., Maheshwari N. and Sopory S. K. 2001. Genomics, DNA chips and a revolution in plant biology. Curr. Sci., 80: 252–261.

    CAS  Google Scholar 

  • Marra M., Kucaba T., Sekhon M. et al. 1999. A map for sequence analysis of the Arabidopsis thailana genome. Nat. Genet., 22: 265–270.

    Article  PubMed  CAS  Google Scholar 

  • Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D. and Tanksley S. D. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 262: 1432–1436.

    Article  PubMed  CAS  Google Scholar 

  • Matsumara H., Nirasawa S. and Terauchi R. 1999. Transcript profiling in rice (Oryza sativa L. ) seedlings using serial analysis of gene expression (SAGE). Plant J., 20: 719–726.

    Article  Google Scholar 

  • McCouch S. R., Kochert G., Yu Z. H., Wang Z. Y., Khush G. S., Coffman W. R. and Tanksley S. D. 1988. Molecular mapping of rice chromosomes. Theor. Appl. Genet., 76: 815–829.

    Article  CAS  Google Scholar 

  • Mohan M., Nair S., Bhagwat A., Krishna T. G., Yano M., Bhatia C. R. and Sasaki T. 1997. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol. Breed., 3: 87–103.

    Article  CAS  Google Scholar 

  • Mozo T., Dewar K., Dunn P., Ecker J. R., Fischer S., Kloska S., Lehrach H., Marra M., Martienssen R., Meir-Ewert S. and Altmann T. 1999. A complete BAC-based physical map of Arabidopsis thaliana genome. Nat. Genet., 22: 271–275.

    Article  PubMed  CAS  Google Scholar 

  • Nagamura Y., Antonio B. A. and Sasaki T. 1997. Rice molecular genetic map using RFLPs and its applications. Plant Mol. Biol., 35: 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Nierman W. C., Eisen J. A., Fleischmann R. D. and Fraser C. M. 2000. Genome data: what do we learn? Curr Opin. Struct. Biol., 10: 343–348.

    Article  PubMed  CAS  Google Scholar 

  • Osborne B. I. and Baker B. 1995. Movers and shakers: maize transposons as tools for analyzing other plant genomes. Curr. Opin. Cell Biol., 7: 406–413.

    Article  PubMed  CAS  Google Scholar 

  • Parinov S. and Sundaresan V. 2000. Functional genomics in Arabidopsis: large–scale insertional mutagenesis complements the genome sequencing project. Curr. Opin. Biotech., 11: 157–161.

    Article  Google Scholar 

  • Pennisi E. 2000. Arabidopsis comes of age. Science, 290: 32–35.

    Article  PubMed  CAS  Google Scholar 

  • Pereira A. 2000. A transgenic perspective on plant functional genomics. Transgenic Res., 9: 245–260.

    Article  PubMed  CAS  Google Scholar 

  • Roach J. C., Siegel A F., Van den Engh G., Trask B. and Hood L. 1999. Gaps in Human Genome Project. Nature, 401: 843–845.

    Article  PubMed  CAS  Google Scholar 

  • Saji S., Umehara Y., Antonio B. A., Yamane H., Tanoue H., Baba T., Aoki H., Ishige N., Wu J., Koike K., Matsumoto T. and Sasaki T. 2001. A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes. Genome, 44: 32–37.

    Article  PubMed  CAS  Google Scholar 

  • Sakata K., Antonio B. A., Mukai Y., Nagasaki H., Sakai Y., Makino K. and Sasaki T. 2000. INE: a rice genome database with an integrated map view. Nucleic Acids Res., 28: 97–101.

    Article  PubMed  CAS  Google Scholar 

  • Sanger F., Nicklen S. and Coulson A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci., USA, 74: 5463–5467.

    CAS  Google Scholar 

  • Sasaki T. and B. Burr. 2000. International rice genome sequencing project: the effort to completely sequence the rice genome. Curr. Opin. Plant Biol., 3: 138–141.

    Article  PubMed  CAS  Google Scholar 

  • Sato Y., Sntoku N., Miura Y., Hirochika H., Kitano H., Matsuoka M. 1999. Loss of function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J., 18: 992–1002.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer R., Landgraf J., Perez-Amador M. and Wisman E. 2000. Monitoring genome-wide expression in plants. Curr. Opin. Biotech., 11: 162–167.

    Article  PubMed  CAS  Google Scholar 

  • Schena M., Shalon D., Davis R. W. and Brown P. O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270: 467–470.

    Article  PubMed  CAS  Google Scholar 

  • Seki M., Narusaka M., Abe H., Kasuga M., Yamaguchi-Shinozaki K., Carninci P., Hayashizaki Y. and Shinozaki K. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 13: 61–72.

    PubMed  CAS  Google Scholar 

  • Shizuya H., Birren B., Kim U. -J., Mancino V., Slepak T., Tachiiri Y. and Simon M. 1992. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci., USA, 89: 8794–8797.

    CAS  Google Scholar 

  • Springer P. S. 2000. Gene traps: tools for plant development and genomics. Plant Cell, 12: 1007–1020.

    PubMed  CAS  Google Scholar 

  • Sundaresan V., Springer P., Volpe T., Haward S., Jones J. D. G., Dean C., Ma H. and Martienssen R. 1995. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev., 9: 1797–1810.

    Article  PubMed  CAS  Google Scholar 

  • Sussman M. R., Amasino R. A., Young J. C., Krysan P. J. and Austin-Phillips J. 2000. The Arabidopsis knockout facility at the University of Wisconsin-Madison. Plant Physiol., 124: 1465–1467.

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796–815.

    Article  Google Scholar 

  • Tyagi A. K., Khurana J. P., Sharma A. K., Mohanty A., Dhingra A., Raghuvanshi S., Mukhopadhaya A., Gupta V., An and S., Kathuria H., Bhusan S., Thakur J. and Kumar D. 2002. Organ-specific gene expression and genetic transformation for improvement of rice. In: Proceedings of IVth International Rice Genetics Symposium, Manila, The Philippines (In Press).

    Google Scholar 

  • Tyagi A. K. and Mohanty A. 2000. Rice transformation for crop improvement and functional genomics. Plant Sci., 158: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Velculescu V. E., Zhang L., Vogelstein B. and Kinzler K. W. 1995. Serial analysis of gene expression. Science, 270: 484–487.

    Article  PubMed  CAS  Google Scholar 

  • Venter C. J., Smith H. O. and Hood L. 1996. A new strategy for genome sequencing. Nature, 381: 364–366.

    Article  PubMed  CAS  Google Scholar 

  • Venter C. J., Adams M. D., Sutton G. G., Kerlavage A. R., Smith H. O. and Hunkapiller M. 1998. Shotgun sequencing of the human genome. Science, 280: 1540–1542.

    Article  PubMed  CAS  Google Scholar 

  • Venter J. C. et al. 2001. The sequence of the human genome. Science, 291: 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  • Vodkin L. 1989. Transposable element influence on plant gene expression and variation. In: The Biochemistry of Plants, vol. 15, Academic Press Inc., San Diego, pp. 83–132.

    Google Scholar 

  • Waiden R., Fritze K., Hayashi H., Miklaschevichs E., Harling H. and Schell J. 1994. Activation tagging: a means of isolating genes implicated as playing a role in plant growth and development. Plant Mol. Biol., 26: 1521–1528.

    Article  Google Scholar 

  • Weigel D., Ahn J. H., Blazquez M. A., Borevitz J. O., Christensen S. K., Fankhauser C., Ferrandiz C., Kardailsky I., Malancharuvil E. J., Neff M. M., Nguyen J. T., Sato S., Wang Z. Y., Xia Y., Dixon R. A., Harrison M. J., Lamb C. J., Yanofsky M. F. and Chory J. 2000. Activation tagging in Arabidopsis. Plant Physiol., 122: 1003–1013.

    Article  PubMed  CAS  Google Scholar 

  • White J. A., Todd J., Newman T., Focks N., Girke T., Martinez de Ilarduya O., Jaworski J. G., Ohlrogge J. B. and Benning C. 2000. A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol., 124: 1582–1594.

    Article  PubMed  Google Scholar 

  • Wisman E. and Ohlrogge J. B. 2000. Arabidopsis microarray service facilities. Plant Physiol., 124: 1468–1471.

    Article  PubMed  CAS  Google Scholar 

  • Yan H., Min S. and Zhu L. 1999. Visualization of Oryza eichingeri chromosomes in intergenomic hybrid plants from O. sativa × O. eichingeri via fluorescent in situ hybridization. Genome, 42: 48–51.

    Google Scholar 

  • Yano M, Katayose Y., Ashikari M., Yamanouchi U., Monna L., Fuse T., Baba T., Yamamoto K., Umehara Y., Nagamura Y. and Sasaki T. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 12: 2473–2483.

    PubMed  CAS  Google Scholar 

  • Yazaki J., Kishimoto N., Nakamura K., Fujii F., Shimbo K., Otsuka Y., Wu J., Yamamoto K., Sakata K., Sasaki T. and Kikuchi S. 2000. Embarking on rice functional genomics via cDNA microarray: use of 3’ UTR probes for specific gene expression analysis. DNA Res., 7: 367–370.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H K Jain M C Kharkwal

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tyagi, A.K., Khurana, J.P., Khurana, P., Mohanty, A., Bharti, A.K. (2004). Genome-wide Molecular Approaches in Plants: From Structure to Function. In: Jain, H.K., Kharkwal, M.C. (eds) Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1040-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1040-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3773-0

  • Online ISBN: 978-94-007-1040-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics