Skip to main content

Systemic Instigation: A Mouse Model to Study Breast Cancer as a Systemic Disease

  • Chapter
  • First Online:
Mouse as a Model Organism
  • 1159 Accesses

Abstract

Little is known about the mechanisms that cause indolent tumors – such as micrometastases, occult primary tumors, or minimal residual disease – to erupt into overt, malignant cancers. As a result, predicting which patients are likely to experience disease relapse and treating patients with metastatic disease has been frustratingly limited. We developed an in vivo xenograft model system that provided us with fundamental insights into processes that govern indolent tumor growth and represented a new paradigm for translational cancer research. We learned that systemic endocrine factors and circulating bone marrow-derived cells support the acquisition of malignant traits by otherwise indolent tumors. As a result, we now think of cancer as a systemic disease by which tumors actively perturb as well as respond to the host systemic environment. First, we found that certain human breast carcinoma cell lines (we term “instigators”) facilitate the growth of otherwise-indolent tumor cells (we term “responders”) located at distant anatomical sites within host mice – a process we term “systemic instigation”. Second, systemic instigation is accompanied by incorporation of bone marrow-derived cells into the stroma of the distant once-indolent tumors. Importantly, bone marrow cells (BMCs) of hosts bearing instigating tumors are functionally activated in the marrow prior to their mobilization into the circulation. Third, instigating tumor-derived osteopontin (OPN), a cytokine that is elevated in the plasma of patients with metastatic cancers and is predicitive of poor outcome, is necessary but not sufficient for systemic instigation. Although there may be alternative explanations, this systemic communication between tumors might explain why patients diagnosed with one malignant neoplasm are at an increased risk of presenting with multiple, independent primary cancers or why patients with recurrent disease often present with multiple metastases that appear to arise suddenly and synchronously. In this review, I address the methods by which the systemic instigation model was established, what we’ve learned by using this model, the implications of our studies, and some of the questions that have yet to be answered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre-Ghiso, J. A. (2007). Models, mechanisms and clinical evidence for cancer dormancy. Nature Reviews Cancer, 7, 834–846.

    Article  CAS  PubMed  Google Scholar 

  • Almog, N. (2010). Molecular mechanisms underlying tumor dormancy. Cancer Letters, 294, 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Almog, N., Henke, V., Flores, L., Hlatky, L., Kung, A. L., Wright, R. D., et al. (2006). Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis. The FASEB Journal, 20, 947–949.

    Article  CAS  PubMed  Google Scholar 

  • Andreu, P., Johansson, M., Affara, N. I., Pucci, F., Tan, T., Junankar, S., et al. (2010). FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell, 17, 121–134.

    Article  CAS  PubMed  Google Scholar 

  • Ansieau, S., Hinkal, G., Thomas, C., Bastid, J., & Puisieux, A. (2008). Early origin of cancer metastases: Dissemination and evolution of premalignant cells. Cell Cycle, 7, 3659–3663.

    Article  CAS  PubMed  Google Scholar 

  • Badiavas, E. V., Abedi, M., Butmarc, J., Falanga, V., & Quesenberry, P. (2003). Participation of bone marrow derived cells in cutaneous wound healing. Journal of Cellular Physiology, 196, 245–250.

    Article  CAS  PubMed  Google Scholar 

  • Bernards, R., & Weinberg, R. A. (2002). A progression puzzle. Nature, 418, 823.

    Article  CAS  PubMed  Google Scholar 

  • Black, W. C., & Welch, H. G. (1993). Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. New England Journal of Medicine, 328, 1237–1243.

    Article  CAS  PubMed  Google Scholar 

  • Carmichael, A. R., Bendall, S., Lockerbie, L., Prescott, R., & Bates, T. (2002). The long-term outcome of synchronous bilateral breast cancer is worse than metachronous or unilateral tumours. European Journal of Surgical Oncology, 28, 388–391.

    Article  CAS  PubMed  Google Scholar 

  • Casanovas, O., Hicklin, D. J., Bergers, G., & Hanahan, D. (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell, 8, 299–309.

    Article  CAS  PubMed  Google Scholar 

  • Chambers, A. F., Naumov, G. N., Vantyghem, S. A., & Tuck, A. B. (2000). Molecular biology of breast cancer metastasis. Clinical implications of experimental studies on metastatic inefficiency. Breast Cancer Research, 2, 400–407.

    Article  CAS  PubMed  Google Scholar 

  • Cho, H. J., & Kim, H. S. (2009). Osteopontin: A multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Current Atherosclerosis Reports, 11, 206–213.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, B., Kazanecki, C. C., Petersen, T. E., Rittling, S. R., Denhardt, D. T., & Sorensen, E. S. (2007). Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties. Journal of Biological Chemistry, 282, 19463–19472.

    Article  CAS  PubMed  Google Scholar 

  • Cook, A. C., Tuck, A. B., McCarthy, S., Turner, J. G., Irby, R. B., Bloom, G. C., et al. (2005). Osteopontin induces multiple changes in gene expression that reflect the six “hallmarks of cancer” in a model of breast cancer progression. Molecular Carcinogenesis, 43, 225–236.

    Article  CAS  PubMed  Google Scholar 

  • Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867.

    Article  CAS  PubMed  Google Scholar 

  • Crawford, H. C., Matrisian, L. M., & Liaw, L. (1998). Distinct roles of osteopontin in host defense activity and tumor survival during squamous cell carcinoma progression in vivo. Cancer Research, 58, 5206–5215.

    CAS  PubMed  Google Scholar 

  • de Visser, K. E., Korets, L. V., & Coussens, L. M. (2005). De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell, 7, 411–423.

    Article  PubMed  Google Scholar 

  • Denhardt, D. T., Noda, M., O’Regan, A. W., Pavlin, D., & Berman, J. S. (2001). Osteopontin as a means to cope with environmental insults: Regulation of inflammation, tissue remodeling, and cell survival. The Journal of Clinical Investigation, 107, 1055–1061.

    Article  CAS  PubMed  Google Scholar 

  • Direkze, N. C., Hodivala-Dilke, K., Jeffery, R., Hunt, T., Poulsom, R., Oukrif, D., et al. (2004). Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Research, 64, 8492–8495.

    Article  CAS  PubMed  Google Scholar 

  • Ebos, J. M., Lee, C. R., & Kerbel, R. S. (2009). Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Research, 15, 5020–5025.

    Article  CAS  Google Scholar 

  • Elenbaas, B., Spirio, L., Koerner, F., Fleming, M. D., Zimonjic, D. B., Donaher, J. L., et al. (2001). Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes & Development, 15, 50–65.

    Article  CAS  Google Scholar 

  • Engel, J., Eckel, R., Kerr, J., Schmidt, M., Furstenberger, G., Richter, R., et al. (2003). The process of metastasisation for breast cancer. The European Journal of Cancer, 39, 1794–1806.

    Article  CAS  Google Scholar 

  • Fathke, C., Wilson, L., Hutter, J., Kapoor, V., Smith, A., Hocking, A., et al. (2004). Contribution of bone marrow-derived cells to skin: Collagen deposition and wound repair. Stem Cells, 22, 812–822.

    Article  PubMed  Google Scholar 

  • Fehm, T., Mueller, V., Marches, R., Klein, G., Gueckel, B., Neubauer, H., et al. (2008). Tumor cell dormancy: Implications for the biology and treatment of breast cancer. APMIS, 116, 742–753.

    Article  CAS  PubMed  Google Scholar 

  • Feng, F., & Rittling, S. R. (2000). Mammary tumor development in MMTV-c-myc/MMTV-v-Ha-ras transgenic mice is unaffected by osteopontin deficiency. Breast Cancer Research and Treatment, 63, 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews Cancer, 3, 453–458.

    Article  CAS  PubMed  Google Scholar 

  • Fidler, I. J., & Kripke, M. L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science, 197, 893–895.

    Article  CAS  PubMed  Google Scholar 

  • Folkman, J., & Kalluri, R. (2004). Cancer without disease. Nature, 427, 787.

    Article  CAS  PubMed  Google Scholar 

  • Franzen, A., & Heinegard, D. (1985). Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochemical Journal, 232, 715–724.

    CAS  PubMed  Google Scholar 

  • Furger, K. A., Menon, R. K., Tuck, A. B., Bramwell, V. H., & Chambers, A. F. (2001). The functional and clinical roles of osteopontin in cancer and metastasis. Current Molecular Medicine, 1, 621–632.

    Article  CAS  PubMed  Google Scholar 

  • Gohongi, T., Fukumura, D., Boucher, Y., Yun, C. O., Soff, G. A., Compton, C., et al. (1999). Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth: Involvement of transforming growth factor beta1. Nature Medicine, 5, 1203–1208.

    Article  CAS  PubMed  Google Scholar 

  • Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N. R., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109, 625–637.

    Article  CAS  PubMed  Google Scholar 

  • Holzer, G., Obermair, A., Koschat, M., Preyer, O., Kotz, R., & Trieb, K. (2001). Concentration of vascular endothelial growth factor (VEGF) in the serum of patients with malignant bone tumors. Medical and Pediatric Oncology, 36, 601–604.

    Article  CAS  PubMed  Google Scholar 

  • Ince, T. A., Richardson, A. L., Bell, G. W., Saitoh, M., Godar, S., Karnoub, A. E., et al. (2007). Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell, 12, 160–170.

    Article  CAS  PubMed  Google Scholar 

  • Iwata, M., Awaya, N., Graf, L., Kahl, C., & Torok-Storb, B. (2004). Human marrow stromal cells activate monocytes to secrete osteopontin, which down-regulates Notch1 gene expression in CD34+ cells. Blood, 103, 4496–4502.

    Article  CAS  PubMed  Google Scholar 

  • Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., & Thun, M. J. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59, 225–249.

    Article  Google Scholar 

  • Johnston, N. I., & El-Tanani, M. K. (2008). Osteopontin: A new role for a familiar actor. Breast Cancer Research, 10, 306.

    Article  PubMed  Google Scholar 

  • Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer, 9, 239–252.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S. Y., & Watnick, R. S. (2008). Regulation of tumor dormancy as a function of tumor-mediated paracrine regulation of stromal Tsp-1 and VEGF expression. APMIS, 116, 638–647.

    Article  CAS  PubMed  Google Scholar 

  • Kazanecki, C. C., Kowalski, A. J., Ding, T., Rittling, S. R., & Denhardt, D. T. (2007a). Characterization of anti-osteopontin monoclonal antibodies: Binding sensitivity to post-translational modifications. Journal of Cellular Biochemistry, 102, 925–935.

    Article  CAS  PubMed  Google Scholar 

  • Kazanecki, C. C., Uzwiak, D. J., & Denhardt, D. T. (2007b). Control of osteopontin signaling and function by post-translational phosphorylation and protein folding. Journal of Cellular Biochemistry, 102, 912–924.

    Article  CAS  PubMed  Google Scholar 

  • Klein, C. A. (2009). Parallel progression of primary tumours and metastases. Nature Reviews Cancer, 9, 302–312.

    Article  CAS  PubMed  Google Scholar 

  • Klein, C. A., Blankenstein, T. J., Schmidt-Kittler, O., Petronio, M., Polzer, B., Stoecklein, N. H., et al. (2002). Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet, 360, 683–689.

    Article  CAS  PubMed  Google Scholar 

  • Kopp, H. G., Ramos, C. A., & Rafii, S. (2006). Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Current Opinion in Hematology, 13, 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Likui, W., Hong, W., & Shuwen, Z. (2010). Clinical significance of the upregulated osteopontin mRNA expression in human colorectal cancer, The Journal of Gastrointestinal Surgery, 14, 74–81.

    Article  Google Scholar 

  • McAllister, S. S., Gifford, A. M., Greiner, A. L., Kelleher, S. P., Saelzler, M. P., Ince, T. A., et al. (2008). Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell, 133, 994–1005.

    Article  CAS  PubMed  Google Scholar 

  • McAllister, S. S., & Weinberg, R. A. (2010). Tumor-host interactions: A far-reaching relationship. Journal of Clinical Oncology, 28, 4022–4028.

    Article  PubMed  Google Scholar 

  • Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436, 518–524.

    Article  CAS  PubMed  Google Scholar 

  • Moore, M. A., Hattori, K., Heissig, B., Shieh, J. H., Dias, S., Crystal, R. G., et al. (2001). Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Annals of the New York Academy of Sciences, 938, 36–45, discussion 45–37.

    Article  CAS  PubMed  Google Scholar 

  • Mullen, C. A., Urban, J. L., Van Waes, C., Rowley, D. A., & Schreiber, H. (1985). Multiple cancers. Tumor burden permits the outgrowth of other cancers. Journal of Experimental Medicine, 162, 1665–1682.

    Article  CAS  PubMed  Google Scholar 

  • Murdoch, C., Muthana, M., Coffelt, S. B., & Lewis, C. E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews Cancer, 8, 618–631.

    Article  CAS  PubMed  Google Scholar 

  • Nagrath, S., Sequist, L. V., Maheswaran, S., Bell, D. W., Irimia, D., Ulkus, L., et al. (2007). Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450, 1235–1239.

    Article  CAS  PubMed  Google Scholar 

  • Naumov, G. N., Bender, E., Zurakowski, D., Kang, S. Y., Sampson, D., Flynn, E., et al. (2006). A model of human tumor dormancy: An angiogenic switch from the nonangiogenic phenotype. Journal of the National Cancer Institute, 98, 316–325.

    Article  PubMed  Google Scholar 

  • Nemir, M., Bhattacharyya, D., Li, X., Singh, K., Mukherjee, A. B., & Mukherjee, B. B. (2000). Targeted inhibition of osteopontin expression in the mammary gland causes abnormal morphogenesis and lactation deficiency. The Journal of Biological Chemistry, 275, 969–976.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, D. X., Bos, P. D., & Massague, J. (2009). Metastasis: From dissemination to organ-specific colonization. Nature Reviews Cancer, 9, 274–284.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, M., Thomsen, J. L., Primdahl, S., Dyreborg, U., & Andersen, J. A. (1987). Breast cancer and atypia among young and middle-aged women: A study of 110 medicolegal autopsies. British Journal of Cancer, 56, 814–819.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, S. K., Johnston, H. M., Whitty, G. A., Williams, B., Webb, R. J., Denhardt, D. T., et al. (2005). Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood, 106, 1232–1239.

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., et al. (1997). Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell, 88, 277–285.

    Article  PubMed  Google Scholar 

  • O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994). Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 79, 315–328.

    Article  PubMed  Google Scholar 

  • Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., et al. (2009). Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 15, 220–231.

    Article  CAS  PubMed  Google Scholar 

  • Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.

    Article  Google Scholar 

  • Pantel, K., Cote, R. J., & Fodstad, O. (1999). Detection and clinical importance of micrometastatic disease. Journal of the National Cancer Institute, 91, 1113–1124.

    Article  CAS  PubMed  Google Scholar 

  • Peehl, D. M. (2004). Are primary cultures realistic models of prostate cancer? Journal of Cellular Biochemistry, 91, 185–195.

    Article  CAS  PubMed  Google Scholar 

  • Poon, R. T., Ng, I. O., Lau, C., Zhu, L. X., Yu, W. C., Lo, C. M., et al. (2001). Serum vascular endothelial growth factor predicts venous invasion in hepatocellular carcinoma: A prospective study. Annals of Surgery, 233, 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Pritchard, H., & Micklem, H. S. (1973). Haemopoietic stem cells and progenitors of functional T-lymphocytes in the bone marrow of ‘nude’ mice. Clinical & Experimental Immunology, 14, 597–607.

    CAS  Google Scholar 

  • Rafii, S. (2000). Circulating endothelial precursors: Mystery, reality, and promise. The Journal of Clinical Investigation, 105, 17–19.

    Article  CAS  PubMed  Google Scholar 

  • Ramankulov, A., Lein, M., Kristiansen, G., Meyer, H. A., Loening, S. A., & Jung, K. (2007). Elevated plasma osteopontin as marker for distant metastases and poor survival in patients with renal cell carcinoma. Journal of Cancer Research and Clinical Oncology, 133, 643–652.

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy, S., Ross, K. N., Lander, E. S., & Golub, T. R. (2003). A molecular signature of metastasis in primary solid tumors. Nature Genetics, 33, 49–54.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, A. L., Wang, Z. C., De Nicolo, A., Lu, X., Brown, M., Miron, A., et al. (2006). X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell, 9, 121–132.

    Article  CAS  PubMed  Google Scholar 

  • Rittling, S. R., Chen, Y., Feng, F., & Wu, Y. (2002). Tumor-derived osteopontin is soluble, not matrix associated. Journal of Biological Chemistry, 277, 9175–9182.

    Article  CAS  PubMed  Google Scholar 

  • Rudland, P. S., Platt-Higgins, A., El-Tanani, M., De Silva Rudland, S., Barraclough, R., Winstanley, J. H., et al. (2002). Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Research, 62, 3417–3427.

    CAS  PubMed  Google Scholar 

  • Ruiterkamp, J., Ernst, M. F., van de Poll-Franse, L. V., Bosscha, K., Tjan-Heijnen, V. C., & Voogd, A. C. (2009). Surgical resection of the primary tumour is associated with improved survival in patients with distant metastatic breast cancer at diagnosis, European Journal of Surgical Oncology, 35, 1146–1151.

    Article  CAS  PubMed  Google Scholar 

  • Ruiterkamp, J., Voogd, A. C., Bosscha, K., Tjan-Heijnen, V. C., & Ernst, M. F. (2010). Impact of breast surgery on survival in patients with distant metastases at initial presentation: A systematic review of the literature. Breast Cancer Research and Treatment, 120, 9–16.

    Article  PubMed  Google Scholar 

  • Schaapveld, M., Visser, O., Louwman, W. J., Willemse, P. H., de Vries, E. G., van der Graaf, W. T., et al. (2008b). The impact of adjuvant therapy on contralateral breast cancer risk and the prognostic significance of contralateral breast cancer: A population based study in the Netherlands. Breast Cancer Research and Treatment, 110, 189–197.

    Article  CAS  PubMed  Google Scholar 

  • Schaapveld, M., Visser, O., Louwman, M. J., de Vries, E. G., Willemse, P. H., Otter, R., et al. (2008a). Risk of new primary nonbreast cancers after breast cancer treatment: A Dutch population-based study. Journal of Clinical Oncology, 26, 1239–1246.

    Article  PubMed  Google Scholar 

  • Schedi, M. P., Goldstein, G., & Boyce, E. A. (1975). Differentiation of T cells in nude mice. Science, 190, 1211–1213.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Kittler, O., Ragg, T., Daskalakis, A., Granzow, M., Ahr, A., Blankenstein, T. J., et al. (2003). From latent disseminated cells to overt metastasis: Genetic analysis of systemic breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 100, 7737–7742.

    Article  CAS  PubMed  Google Scholar 

  • Schoenberg, B. S. (1977). Multiple primary malignant neoplasms. The connecticut experience, 1935–1964. Recent Results Cancer Research, 58, 1–173.

    CAS  Google Scholar 

  • Senger, D. R., Wirth, D. F., & Hynes, R. O. (1979). Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell, 16, 885–893.

    Article  CAS  PubMed  Google Scholar 

  • Shojaei, F., Wu, X., Malik, A. K., Zhong, C., Baldwin, M. E., Schanz, S., et al. (2007). Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology, 25, 911–920.

    Article  CAS  PubMed  Google Scholar 

  • Stier, S., Ko, Y., Forkert, R., Lutz, C., Neuhaus, T., Grunewald, E., et al. (2005). Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. The Journal of Experimental Medicine, 201, 1781–1791.

    Article  CAS  PubMed  Google Scholar 

  • Takigawa, M., & Hanaoka, M. (1978). In vivo maturation of B cells in the spleen of nude mice following administration of bacterial lipopolysaccharide. International Archives of Allergy and Applied Immunology, 56, 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Tuck, A. B., Chambers, A. F., & Allan, A. L. (2007). Osteopontin overexpression in breast cancer: Knowledge gained and possible implications for clinical management. Journal of Cellular Biochemistry, 102, 859–868.

    Article  CAS  PubMed  Google Scholar 

  • Ugurel, S., Rappl, G., Tilgen, W., & Reinhold, U. (2001). Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. Journal of Clinical Oncology, 19, 577–583.

    CAS  PubMed  Google Scholar 

  • van de Vijver, M. J., He, Y. D., van’t Veer, L. J., Dai, H., Hart, A. A., Voskuil, D. W., et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. The New England Journal of Medicine, 347, 1999–2009.

    Article  PubMed  Google Scholar 

  • van ‘t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530–536.

    Article  PubMed  Google Scholar 

  • Vecchi, M., Confalonieri, S., Nuciforo, P., Vigano, M. A., Capra, M., Bianchi, M., et al. (2008). Breast cancer metastases are molecularly distinct from their primary tumors. Oncogene, 27, 2148–2158.

    Article  CAS  PubMed  Google Scholar 

  • Visonneau, S., Cesano, A., Torosian, M. H., Miller, E. J., & Santoli, D. (1998). Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice. The American Journal of Pathology, 152, 1299–1311.

    CAS  PubMed  Google Scholar 

  • Volpert, O. V., Lawler, J., & Bouck, N. P. (1998). A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1. Proceedings of the National Academy of Sciences of the United States of America, 95, 6343–6348.

    Article  CAS  PubMed  Google Scholar 

  • Wai, P. Y., Mi, Z., Guo, H., Sarraf-Yazdi, S., Gao, C., Wei, J., et al. (2005). Osteopontin silencing by small interfering RNA suppresses in vitro and in vivo CT26 murine colon adenocarcinoma metastasis. Carcinogenesis, 26, 741–751.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, S., Kodama, T., Shimosato, Y., Arimoto, H., Sugimura, T., Suemasu, K., et al. (1984). Multiple primary cancers in 5,456 autopsy cases in the National Cancer Center of Japan. Journal of the National Cancer Institute, 72, 1021–1027.

    CAS  PubMed  Google Scholar 

  • Weiss, L. (1992). Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clinical and Experimental Metastasis, 10, 191–199.

    Article  CAS  PubMed  Google Scholar 

  • Welsh, R. M., Jr. (1978). Mouse natural killer cells: Induction specificity, and function. The Journal of Immunology, 121, 1631–1635.

    PubMed  Google Scholar 

  • Woelfle, U., Cloos, J., Sauter, G., Riethdorf, L., Janicke, F., van Diest, P., et al. (2003). Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Research, 63, 5679–5684.

    CAS  PubMed  Google Scholar 

  • Worthley, D. L., Ruszkiewicz, A., Davies, R., Moore, S., Nivison-Smith, I., Bik To, L., et al. (2009). Human gastrointestinal neoplasia-associated myofibroblasts can develop from bone marrow-derived cells following allogeneic stem cell transplantation. Stem Cells, 27, 1463–1468.

    Article  CAS  PubMed  Google Scholar 

  • Wortis, H. H. (1971). Immunological responses of ‘nude’ mice. Clinical & Experimental Immunology, 8, 305–317.

    CAS  Google Scholar 

Download references

Acknowledgments

I thank Dr. Robert A. Weinberg and members of his laboratory for intellectual contributions and critical discussions during the design and implementation of the experiments reviewed herein. Additionally, I thank Ann M. Gifford and Hanna Kuznetsov for technical support and contributions toward unpublished observations mentioned in this review. Finally, I wish to acknowledge Drs. Zafira Castaño Corsino and Moshe Elkabets for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra S. McAllister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McAllister, S.S. (2011). Systemic Instigation: A Mouse Model to Study Breast Cancer as a Systemic Disease. In: Brakebusch, C., Pihlajaniemi, T. (eds) Mouse as a Model Organism. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0750-4_9

Download citation

Publish with us

Policies and ethics