Skip to main content

System Issues, Requirements and Expectations

  • Chapter
Robotic Tactile Sensing

Abstract

This chapter presents a discussion on the development of a robotic tactile sensing system, keeping in view the tasks and the system related expectations and requirements. The expectations and requirements generally translate into the constraints (or vice-versa), which can be used to set various limits during the design phase of the tactile sensing system. A number of desired requirements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Developing tactile sensing systems along with the robotic platforms and their sensing hardware will be relatively simpler as many design constraints or boundary conditions can be relaxed. In this sense, the above discussion presents a worst case scenario.

  2. 2.

    The Fuller Projection is rendered by juxtaposing a grid of triangles on the globe and transferring the data to corresponding triangles on an unfolded icosahedron. The Fuller Projection, or Dymaxion Map, created by Buckminster Fuller, solves the age-old problem of displaying spherical data on a flat surface using a low-distortion transformation. The map also shows the world’s land masses without interruption.

  3. 3.

    The PVDF polymer possesses both piezoelectric and pyroelectric properties. This means that a PVDF based sensor can be used to measure the mechanical stimulus provided that sensed values are compensated for the temperature dependence. The same can either be done mathematically using previously measured temperature dependent response or by measuring the same using another similar but mechanically isolated PVDF based sensor.

  4. 4.

    The control bandwidth provides the frequency range within which a system can be controlled.

  5. 5.

    In the early 1990s, work began on the modern CMOS active pixel sensor (APS), conceived originally in 1968. It was quickly realized that adding an amplifier to each pixel significantly increases the sensor speed and improves its signal-to-noise ratio (SNR), thus overcoming the shortcomings of passive pixel sensors. A local analog pixel memory is also present and a shutter mechanism helps in synchronizing the information captured by the pixel in the array [47].

  6. 6.

    This classification reflects an electronic viewpoint. There could be other classifications also. For instance classification of tactile sensors based on active and passive transducer materials. The active transducers (e.g. piezoelectric materials) do not require external power for their operation. On the contrary the passive transducers (e.g. resistive, capacitive etc.) require external source of power.

References

  1. R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing—from humans to humanoids. IEEE Trans. Robot. 26(1), 1–20 (2010)

    Article  Google Scholar 

  2. Y. Ohmura, Y. Kuniyoshi, A. Nagakubo, Conformable and scalable tactile sensor skin for curved surfaces, in IEEE International Conference on Robotics and Automation, Orlando, Florida, USA (2006)

    Google Scholar 

  3. V.L. Lumelsky, M.S. Shur, S. Wagner, Sensitive skin. IEEE Sens. J. 1(1), 41–51 (2001)

    Article  Google Scholar 

  4. D. Um, B. Stankovic, K. Giles, T. Hammond, V.L. Lumelsky, A modularized sensitive skin for motion planning in uncertain environments, in IEEE International Conference on Robotics and Automation, Leuven, Belgium (1998), pp. 7–112

    Google Scholar 

  5. S.C. Jacobsen, I.D. McCammon, K.B. Biggers, R.P. Phillips, Design of tactile sensing systems for dextrous manipulators. IEEE Control Syst. Mag. 8(1), 3–13 (1988)

    Article  Google Scholar 

  6. M.R. Cutkosky, R.D. Howe, W. Provancher, Force and tactile sensors, in Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Berlin, 2008), pp. 455–476

    Chapter  Google Scholar 

  7. B.D. Argall, A.G. Billard, A survey of tactile human–robot interactions. Robot. Auton. Syst. 58, 1159–1176 (2010)

    Article  Google Scholar 

  8. P.A. Schmidt, E. Mael, R.P. Wurtz, A sensor for dynamic tactile information with applications in human–robot interaction & object exploration. Robot. Auton. Syst. 54, 1005–1014 (2006)

    Article  Google Scholar 

  9. R.D. Howe, M.R. Cutkosky, Dynamic tactile sensing: perception of fine surface features with stress rate sensing. IEEE Trans. Robot. Autom. 9(2), 140–151 (1993)

    Article  Google Scholar 

  10. Z. Li, P. Hsu, S. Sastry, Grasping and coordinated manipulation by a multifingered robot hand. Int. J. Robot. Res. 8(4), 33–50 (1989)

    Article  Google Scholar 

  11. R.D. Howe, M.R. Cutkosky, Integrating tactile sensing with control for dextrous manipulation, in IEEE International Workshop on Intelligent Motion Control, Istanbul, Turkey (1990), pp. 369–374

    Chapter  Google Scholar 

  12. A.D. Berger, P.K. Khosla, Using tactile data for real-time feedback. Int. J. Robot. Res. 10(2), 88–102 (1991)

    Article  Google Scholar 

  13. R.S. Fearing, Tactile sensing mechanisms. Int. J. Robot. Res. 9(3), 3–23 (1990)

    Article  Google Scholar 

  14. A. Bicchi, J.K. Salisbury, P. Dario, Augmentation of grasp robustness using intrinsic tactile sensing, in IEEE International Conference on Robotics and Automation, Cincinnati, USA (1990), pp. 968–973

    Chapter  Google Scholar 

  15. R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca Raton, 1994)

    MATH  Google Scholar 

  16. C. Domenici, D. De Rossi, A. Bicchi, S. Bennati, Shear stress detection in an elastic layer by a piezoelectric polymer tactile sensor. IEEE Trans. Dielectr. Electr. Insul. 24(6), 1077–1081 (1989)

    Google Scholar 

  17. D. De Rossi, G. Canepa, G. Magenes, F. Germagnoli, A. Caiti, T. Parisini, Skin-like tactile sensor arrays for contact stress field extraction. Mater. Sci. Eng. C1, 23–36 (1993)

    Google Scholar 

  18. J.L. Novak, Initial design and analysis of a capacitive sensor for shear and normal force measurement, in IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA (1989), pp. 137–145

    Google Scholar 

  19. M. Shikida, T. Shimizu, K. Sato, K. Itoigawa, Active tactile sensor for detecting contact force and hardness of an object. Sens. Actuators A, Phys. 103, 213–218 (2003)

    Article  Google Scholar 

  20. A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata, G. Metta, Methods and technologies for the implementation of large scale robot tactile sensors. IEEE Trans. Robot. 27(3), 1–12 (2011)

    Article  Google Scholar 

  21. G. Cannata, R.S. Dahiya, M. Maggiali, F. Mastrogiovanni, G. Metta, M. Valle, Modular skin for humanoid robot systems, in The 4th International Conference on Cognitive Systems (CogSys2010), Zurich, Switzerland (2010)

    Google Scholar 

  22. G. Cheng, P. Mittendorfer, Humanoid multi-modal tactile sensing modules. IEEE Trans. Robot. 27(3), 13–22 (2011)

    Google Scholar 

  23. Y. Ohmura, Y. Kuniyoshi, Humanoid robot which can lift a 30 kg box by whole body contact and tactile feedback, in (IROS 2007) IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA (2007), pp. 1136–1141

    Chapter  Google Scholar 

  24. T. Mukai, M. Onishi, T. Odashima, S. Hirano, Z. Luo, Development of the tactile sensor system of a human-interactive robot “RI-MAN”. IEEE Trans. Robot. 24(2), 505–512 (2008)

    Article  Google Scholar 

  25. http://bfi.easystorecreator.com/items/maps/list.htm?1=1

  26. E.D. Demaine, J. O’Rourke, Geometric Folding Algorithms: Linkages, Origami, Polyhedra (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  27. M. Shimojo, Mechanical filtering effect of elastic cover for tactile sensor. IEEE Trans. Robot. Autom. 13, 128–132 (1997)

    Article  Google Scholar 

  28. J. Scheibert, S. Leurent, A. Prevost, G. Debregeas, The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323, 1503–1506 (2008)

    Article  Google Scholar 

  29. M.-Y. Cheng, C.-M. Tsao, Y.-J. Yang, An anthropomorphic robotic skin using highly twistable tactile sensing array, in The 5th IEEE Conference on Industrial Electronics and Applications (ICIEA), Taichung (2010), pp. 650–655

    Chapter  Google Scholar 

  30. B. Huyghe, H. Rogier, J. Vanfleteren, F. Axisa, Design and manufacturing of stretchable high-frequency interconnects. IEEE Trans. Adv. Packag. 31, 802–808 (2009)

    Article  Google Scholar 

  31. D.-Y. Khang, H. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–211 (2006)

    Article  Google Scholar 

  32. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008)

    Article  Google Scholar 

  33. Y. Zhang, C.J. Sheehan, J. Zhai, G. Zou, H. Luo, J. Xiong, Y.T. Zhu, Q.X. Jia, Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 22, 3027–3031 (2010)

    Article  Google Scholar 

  34. K. Noda, E. Iwase, K. Matsumoto, I. Shimoyama, Stretchable liquid tactile sensor for robot-joints, in IEEE International Conference on Robotics and Automation (ICRA), Anchorage (2010), pp. 4212–4217

    Chapter  Google Scholar 

  35. H. Alirezaei, A. Nagakubo, Y. Kuniyoshi, A highly stretchable tactile distribution sensor for smooth surfaced humanoids, in The 7th IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, USA (2007), pp. 167–173

    Chapter  Google Scholar 

  36. S. Tawil, D.C. Rye, M. Velonaki, Improved image reconstruction for an EIT-based sensitive skin with multiple internal electrodes. IEEE Trans. Robot. 27(3), 425–435 (2011)

    Article  Google Scholar 

  37. T. Hoshi, H. Shinoda, Robot skin based on touch-area-sensitive tactile element, in Proceedings of International Conference on Robotics and Automation (2006), pp. 3463–3468

    Google Scholar 

  38. T. Yoshikai, H. Fukushima, M. Hayashi, M. Inaba, Development of soft stretchable knit sensor for humanoids’ whole-body tactile sensibility, in Humanoids 2009: The 9th IEEE-RAS International Conference on Humanoid Robots, Paris (2009), pp. 624–631

    Chapter  Google Scholar 

  39. B. Zitová, J. Flusser, Image registration methods—a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  40. D.J. Van den Heever, K. Schreve, C. Scheffer, Tactile sensing using force sensing resistors and a super-resolution algorithm. IEEE Sens. J. 9(1), 29–35 (2009)

    Article  Google Scholar 

  41. K. Murakami, K. Matsuo, T. Hasegawa, R. Kurazume, A decision method for placement of tactile elements on a sensor glove for the recognition of grasp types. IEEE/ASME Trans. Mechatron. 15, 157–162 (2010)

    Article  Google Scholar 

  42. M. Nilsson, Tactile sensors and other distributed sensors with minimal wiring complexity. IEEE/ASME Trans. Mechatron. 5, 253–257 (2000)

    Article  Google Scholar 

  43. H.R. Schiffman, Sensation and Perception—An Integrated Approach (Wiley, New York, 2001)

    Google Scholar 

  44. Available online: http://asimo.honda.com/

  45. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 101(27), 9966–9970 (2004)

    Article  Google Scholar 

  46. M.H. Raibert, An all digital VLSI tactile array sensor, in IEEE International Conference on Robotics and Automation, vol. 1 (1984), pp. 314–319

    Google Scholar 

  47. A.E. Gamal, H. Eltoukhy, CMOS image sensors. IEEE Circuits Devices Mag. 21(3), 6–20 (2005)

    Article  Google Scholar 

  48. M. Bigas, E. Cabruja, J. Forest, J. Salvi, Review of CMOS image sensors. Microelectron. J. 37, 433–451 (2006)

    Article  Google Scholar 

  49. A. Belenky, A. Fish, A. Spivak, O. Yadid-Pecht, Global shutter CMOS image sensor with wide dynamic range. IEEE Trans. Circuits Syst. II, Express Briefs 54(12), 1032–1036 (2007)

    Article  Google Scholar 

  50. AD7147: CapTouchTM. 2008. Available at: http://www.analog.com

  51. L. Barboni, R.S. Dahiya, G. Metta, M. Valle, Interface electronics design for POSFET devices based tactile sensing systems, in IEEE RO-MAN, 19th IEEE International Symposium in Robot and Human Interactive Communication, Viareggio, Italy (2010), pp. 686–690

    Google Scholar 

  52. M.H. Lee, Tactile sensing: new directions, new challenges. Int. J. Robot. Res. 19(7), 636–643 (2000)

    Google Scholar 

  53. R.-S. Patti, Three-dimensional integrated circuits and the future of system-on-chip designs. Proc. IEEE 94(6), 1214–1224 (2006)

    Article  Google Scholar 

  54. M. Sergio, F. Manaresi, F. Campi, R. Canegallo, M. Tartagni, R. Guerrieri, A dynamically reconfigurable monolithic CMOS pressure sensor for smart fabric. IEEE J. Solid-State Circuits 38(6), 966–975 (2003)

    Article  Google Scholar 

  55. D. Barrettino, S. Hafizovic, T. Volden, J. Sedivy, K.-U. Kirstein, A. Hierlemann, CMOS monolithic mechatronic microsystem for surface imaging and force response studies. IEEE J. Solid-State Circuits 40(4), 951–959 (2005)

    Article  Google Scholar 

  56. W.-C. Fang, A system-on-a-chip design of a low-power smart vision system, in IEEE Workshop on Signal Process Systems (1998), pp. 63–72

    Google Scholar 

  57. G. Indiveri, Neuromorphic analog VLSI sensor for visual tracking: circuits and application examples. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 46(11), 1337–1347 (1999)

    Article  Google Scholar 

  58. N. Navet, Y. Song, F. Simonot-Lion, C. Wilwert, Trends in automotive communication systems. Proc. IEEE 93(6), 1204–1223 (2005)

    Article  Google Scholar 

  59. G. Cannata, M. Maggiali, G. Metta, G. Sandini, An embedded artificial skin for humanoid robots, in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (2008), pp. 434–438

    Chapter  Google Scholar 

  60. H. Shinoda, H. Oasa, Wireless tactile sensing element using stress-sensitive resonator. IEEE/ASME Trans. Mechatron. 5(3), 258–265 (2000)

    Article  Google Scholar 

  61. H. Shinoda, N. Asamura, M. Hakozaki, X. Wang, Two-dimensional signal transmission technology for robotics, in IEEE International Conference on Robotics and Automation (2003), pp. 3207–3212

    Google Scholar 

  62. A. Petrovskaya, O. Khatib, S. Thrun, A.Y. Ng, Bayesian estimation for autonomous object manipulation based on tactile sensors, in International Conference on Robotics and Automation (2006), pp. 707–714

    Google Scholar 

  63. A.R. Jiménez, A.S. Soembagijo, D. Reynaerts, H. Van Brussel, R. Ceres, J.L. Pons, Featureless classification of tactile contacts in a gripper using neural networks. Sens. Actuators A, Phys. 62(1–3), 488–491 (1997)

    Article  Google Scholar 

  64. S. Chitta, J. Sturm, M. Piccoli, W. Burgard, Tactile sensing for mobile manipulation. IEEE Trans. Robot. 27(3), 558–568 (2011)

    Article  Google Scholar 

  65. J. Sinapov, V. Sukhoy, R. Sahai, A. Stoytchev, Vibrotactile recognition and categorization of surfaces by a humanoid robot. IEEE Trans. Robot. 27(3), 488–497 (2011)

    Article  Google Scholar 

  66. M. Johnsson, C. Balkenius, Sense of touch in robots with self-organizing maps. IEEE Trans. Robot. 27(3), 498–507 (2011)

    Article  Google Scholar 

  67. N. Jamali, C. Sammut, Majority voting: material classification by tactile sensing using surface texture. IEEE Trans. Robot. 27(3), 508–521 (2011)

    Article  Google Scholar 

  68. W.D. Stiehl, L. Lalla, C. Breazeal, A “somatic alphabet” approach to “sensitive skin” for robots, in Proceedings ICRA’04, 2004 IEEE International Conference on Robotics and Automation, vol. 3 (2004), pp. 2865–2870

    Chapter  Google Scholar 

  69. G. Cannata, S. Denei, F. Mastrogiovani, Tactile sensing—steps to artificial somatosensory maps, in The 19th International Symposium on Robot and Human Interactive Communication, Viareggio, Italy (2010), pp. 576–581

    Chapter  Google Scholar 

  70. U. Pinkall, K. Polthier, Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Desbrun, M. Meyer, P. Alliez, Intrinsic parametrizations of surface meshes. Comput. Graph. Forum 21(3), 209–218 (2002)

    Article  Google Scholar 

  72. M.O. Ernst, M.S. Banks, Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002)

    Article  Google Scholar 

  73. R. Platt, F. Permenter, J. Pfeiffer, Using Bayesian filtering to localize flexible materials during manipulation. IEEE Trans. Robot. 27(3), 586–598 (2011)

    Article  Google Scholar 

  74. O. Kroemer, C.H. Lampert, J. Peters, Learning dynamic tactile sensing with robust vision-based training. IEEE Trans. Robot. 27(3), 545–557 (2011)

    Article  Google Scholar 

  75. G. Milighetti, T. Emter, H.B. Kuntze, D. Bechler, K. Kroschel, Combined visual–acoustic grasping for humanoid robots, in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Heidelberg, Germany (2006)

    Google Scholar 

  76. P.K. Allen, A. Miller, P.Y. Oh, B. Leibowitz, Integration of vision, force and tactile sensing for grasping. Int. J. Intell. Mach. 4(1), 129–149 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dahiya, R.S., Valle, M. (2013). System Issues, Requirements and Expectations. In: Robotic Tactile Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0579-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0579-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0578-4

  • Online ISBN: 978-94-007-0579-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics