Skip to main content

Mobile Phone Transmitters for Wireless Standards: Systems, Architectures and Technologies

  • Chapter
  • First Online:
Reconfigurable RF Power Amplifiers on Silicon for Wireless Handsets

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1164 Accesses

Abstract

This chapter aims to paint a broad picture of the technological limitations that power amplifiers for wireless handsets must cope with. In order to maximize spectral efficiency and immunity to fading/interferers/noise, modern RF standards generally use techniques such as Spread spectrum or Orthogonal-Frequency-Duplex methods. Their drawback is increased dynamic envelope variations. To preserve linearity, power amplifiers are sometimes forced to operate in a backed-off regime whereby their efficiency is reduced. The most commonly used efficiency-enhancement architectures are reviewed here while their respective advantages/drawbacks are assessed from the standpoint of complexity, bill-of-material, die area and compliance with integration on silicon. At last, the capabilities of the power devices that are available in a 0.25 μm BICMOS SiGe technology (ST Microelectronics) are discussed comparatively to III/V processes in terms of power gain, linearity, and robustness to thermal runaway and/or output load mismatch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • 3GPP (1999) http://www.3gpp.org. Accessed 15 Dec 2010

  • 3GPP (2006) R1-060023, Motorola Cubic Metric in 3GPP-LTE

    Google Scholar 

  • Ankarcrona J, Olsson J (2002) Sub-circuit based SPICE model for high voltage LDMOS transistors. Phys Scr T101:7–9. doi:10.1238/Physica.Topical.101a00007

    Article  Google Scholar 

  • Aoki I, Kee S, Magoon R, Aparicio R, Bohn F, Zachan J, Hatcher G, McClymont D, Hajimiri A (2008) A fully integrated quad-band GSM/GPRS CMOS power amplifier. J Solid-State Circuits, 43(12):2747–2758. doi:10.1109/ISSCC.2008.4523311

    Article  Google Scholar 

  • Aparin V, Larson LE (2003) Linearization of monolithic LNAs using low-frequency low-impedance input termination. Proc Eur Solid-State Circuits Conf, Estoril, Portugal. pp 137–140. doi: 10.1109/ESSCIRC.2003.1257091

    Google Scholar 

  • Apel T, Henderson T, Tang YL, Berger O (2008) Efficient three-state WCDMA PA integrated with high-performance BiHEMT HBT/E-D pHEMT process. Proc Radio Freq Integr Circuits Symp, Atlanta, USA. pp 149–152. doi:10.1109/RFIC.2008.4561406

    Google Scholar 

  • Asbeck P, Larson L, Kimball D, Zhao Y, Wang F, Qiao D (2005) High dynamic range, high efficiency power amplifiers for wireless communications. Proc Bipolar/BiCMOS Technol Meet, Santa Barbara, USA. pp 103–107. doi:10.1109/BIPOL.2005.1555210

    Google Scholar 

  • Bakalski W, Zannoth M, Asam M, Thomann W, Kapfelsperger B, Pfann P, Berkner J, Hepp C, Steltenpohl A, Österreicher W, Rampf E (2008) A load-insensitive quad-band GSM/EDGE SiGeC-bipolar power amplifier with a highly efficient low power mode. Proc Radio Week Symp, Orlando, USA. pp 203–206. doi:10.1109/RWS.2008.4463464

    Google Scholar 

  • Bengtsson O, Litwin A, Olsson J (2003) Small-signal and power evaluation of novel BiCMOS-compatible short-channel LDMOS technology. Trans Microw Theory Tech 51(3):1052–1056. doi:10.1109/TMTT.2003.808697

    Article  Google Scholar 

  • van Bezooijen A, van Straten F, Mahmoudi R, van Roermund AHM (2007) Power amplifier protection by adaptive output power control. J Solid-State Circuits 42(9):1834–1841. doi:10.1109/JSSC.2007.900783

    Article  Google Scholar 

  • Birafane A, Kouki AB (2005) Phase-only predistortion for LINC amplifiers with chireix-outphasing combiners. Trans Microw Theory Tech 53(6):2240–2250. doi:10.1109/TMTT.2005.848748

    Article  Google Scholar 

  • Blanken PG, Karadi R, Bergveld HJ (2008) A 50 MHz bandwidth multi-mode PA supply modulator for GSM, EDGE and UMTS application. Proc Radio Freq Integr Circuits Symp, Atlanta, USA. pp 401–404. doi:10.1109/RFIC.2008.4561463

    Google Scholar 

  • Canepari A, Bertrand G, Giry A, Minondo M, Blanchet F, Jaouen H, Reynard B, Jourdan N, Chante JP (2005) LDMOS modelling for analog and RF circuit design. Proc Eur Solid-State Device Res Conf, Grenoble, France. pp 469–472. doi:10.1109/ESSDER.2005.1546686

    Google Scholar 

  • Carrara F, Presti CD, Scuderi A, Santagati C, Palmisano G (2008) A methodology for fast VSWR protection implemented in a monolithic 3 W 55% PAE RF CMOS power amplifier. J Solid-State Circuits 43(9):2057–2066. doi:10.1109/JSSC.2008.2001894

    Article  Google Scholar 

  • Cha J, Yang Y, Shin B, Kim B (2003) An adaptive bias controlled power amplifier with a load-modulated combining scheme for high efficiency and linearity. IEEE Microw Theory Tech Symp Dig, Philadelphia, USA. 1:81–84

    Google Scholar 

  • Chauhan YS, Gillon R, Declercq M, Ionescu AM (2007) Impact of lateral nonuniform doping and hot carrier injection on capacitance behavior of high voltage MOSFETs. Proc Eur Solid-State Device Res Conf, Munich, Germany. pp 426–429. doi:10.1109/ESSDERC.2007.4430969

    Google Scholar 

  • Chen CT, Li CJ, Horng TS, Jau JK, Li JY (2008) Design and linearization of class-E power amplifier for non-constant envelope modulation. Proc Radio Freq Integr Circuits Symp, Atlanta, USA. pp 145–148. doi:10.1109/RFIC.2008.4561405

    Google Scholar 

  • Chireix H (1935) High power outphasing modulation. Proc Inst Radio Eng 23(11):1370–1392

    Article  Google Scholar 

  • Chu CY, Sheu JJ, Li GP (1999) Effects of ballast resistors on power and ESD performance in AlGaAs/GaAs heterojunction bipolar transistors. CS ManTech Conf Dig, Vancouver, Canada. pp 185–188

    Google Scholar 

  • Cuoco V, van der Heijden MP, Pelk M, de Vreede LCN (2002) Experimental verification of the smoothie database model for third and fifth order intermodulation distortion. Proc Eur Solid-State Device Res Conf, Florence, Italy. pp 635–638

    Google Scholar 

  • Cuoco V, Yanson O, Hammes P, Spirito M, de Vreede LCN, Steenwijk AV, Versleijen M, Neo WCE, Jos HFF, Burghartz JN (2004) Large signal verification of the circuit-oriented smoothie database model for LDMOS devices. Proc Eur Microw Conf, Amsterdam, The Netherlands. pp 217–220

    Google Scholar 

  • Deltimple N, Kerhervé E, Belot D, Deval Y, Jarry P (2005) A SiGe controlled-class power amplifier applied to reconfigurable mobile systems. Proc Eur Microw Conf, Paris, France. doi:10.1109/EUMC.2005.1608892

    Google Scholar 

  • Deng J, Gudem P, Larson LE, Asbeck PM (2004) A high efficiency SiGe BiCMOS WCDMA power amplifier with dynamic current biasing for improved average efficiency. Proc Radio Freq Integr Circuits Symp, Fort Worth, USA. pp 361–364. doi:10.1109/RFIC.2004.1320622

    Google Scholar 

  • Doherty WH (1936) A new high efficiency power amplifier for modulated waves. Proc Inst Radio Eng 24(9):1163–1182

    Article  Google Scholar 

  • Dragon C, Brakensiek W, Burdeaux D, Burger W, Funk G, Hurst M, Rice D (2003) 200 W push–pull & 110 W single-ended high performance RFLDMOS transistors for WCDMA basestation applications. Microw Theory Tech Symp Dig, Philadelphia, USA. 1:69–72

    Google Scholar 

  • Flament A, Frappe A, Kaiser A, Stefanelli B, Cathelin A, Ezzeddine H (2008) A 1.2 GHz semi-digital reconfigurable FIR bandpass filter with passive power combiner. Proc Eur Solid-State Circuits Conf, Edimburgh, UK. pp 418–421. doi:10.1109/ESSCIRC.2008.4681881

    Google Scholar 

  • Frappe A, Stefanelli B, Flament A, Kaiser A, Cathelin A (2008) A digital ΔΣ RF signal generator for mobile communication transmitters in 90 nm CMOS. ProcRadio Freq Integr Circuits Symp, Atlanta, USA. pp 13–16. doi:10.1109/RFIC.2008.4561375

    Google Scholar 

  • Gajadharsing JR (2003) Low distortion RF-LDMOS power transistor for wireless communications base station applications. Microw Theory Tech Symp Dig, Philadelphia, USA. 3:1563–1566

    Google Scholar 

  • Hadjichristos A, Walukas J, Klemmer N, Suter W, Justice S, Uppathil S, Scott G (2004) A highly integrated quad band low EVM polar modulation transmitter for GSM/EDGE applications. Proc Cust Integr Circuits Conf, Orlando, USA. pp 565–568

    Google Scholar 

  • Hamedi-Hagh S, Salama CAT (2004) CMOS Wireless Phase-Shifted Transmitter. J Solid-State Circuits 39(8):1241–1252. doi:10.1109/JSSC.2004.831786

    Article  Google Scholar 

  • Hammes PCA, Jos HFF, van Rijs F, Theeuwen SJCH, Vennema K (2004) High efficiency, high power WCDMA LDMOS transistors for base stations. Microw J, vol 47, 4:94–101

    Google Scholar 

  • Holma H, Toskala A (2007) WCDMA for UMTS: HSPA evolution and LTE, 4th edn. Wiley, New York, NY. ISBN: 978–0–470–68646–1

    Book  Google Scholar 

  • Jayaraman A, Chen PF, Hanington G, Larson L, Asbeck P (1998) Linear high efficiency microwave power amplifiers using bandpass delta–sigma modulators. Microw Guid Wave Lett 8(3):121–123. doi:10.1109/75.661135

    Article  Google Scholar 

  • Juhel S (2000) RF power transistors comparative study of LDMOS versus bipolar technology. ST microelectronics, Application Note AN1223

    Google Scholar 

  • Karoui W, Parra T (2008) A protection circuit for HBT RF power amplifier under load mismatch conditions. Proc Int Northeast Workshop Circuits and Syst Conf, Montreal, Canada. pp 241–244. doi:10.1109/NEWCAS.2008.4606366

    Google Scholar 

  • Kelly DE, Mekechuk K, Miller T (2008) Switch-mode power amplifier linearization. Proc Radio Freq Integr Circuits Symp, Atlanta, USA. pp 153–156. doi:10.1109/RFIC.2008.4561407

    Google Scholar 

  • Ketola J, Sommarek J, Vankka J, Halonen K (2004) Transmitter utilizing bandpass delta-sigma modulator and switching mode power amplifier. Proc Int Symp Circuits Syst, Vancouver, Canada. pp 633–637. doi:10.1109/ISCAS.2004.1328274

    Google Scholar 

  • Kitchen J, Chu WY, Deligoz I, Kiaei S, Bakkaloglu B (2007) Combined linear and modulated switched-mode PA supply modulator for polar transmitters. Int Solid-State Circuits Conf Dig Tech Pap, San Francisco, USA. pp 82–83. doi:10.1109/ISSCC.2007.373598

    Google Scholar 

  • Knaipp M, Park JM, Vescoli V, Roehrer G, Minixhofer R (2006) Investigations on an isolated lateral high-voltage n-channel LDMOS transistor with a typical breakdown of 150 V. Proc Int Solid-State Circuits Conf, Montreux, Switzerland. pp 266–269. doi:10.1109/ESSDER. 2006.307689

    Google Scholar 

  • Koeppe J, Harjani R (2004) Enhanced analytic noise model for RF CMOS design. Proc Cust Integr Circuits Conf, Orlando, USA. pp 383–386

    Google Scholar 

  • Marbell MN, Cherepko SV, Madjar A, Hwang JCM, Frei M, Shibib MA (2004) An improved large-signal model for harmonic-balance simulation of Si LD-MOSFETs. Proc Eur Microw Conf, Amsterdam, The Netherlands. pp 225–228

    Google Scholar 

  • McCune E (2005) Polar modulation and bipolar RF power devices. Proc Bipolar/BiCMOS Technol Meet, Santa Barbara, USA. pp 1–5. doi:10.1109/BIPOL.2005.1555188

    Google Scholar 

  • Metzger AG, Ramanathan R, Jiang L, Hsiang-Chih S, Cismaru C, Hongxiao S, Rushing L, Weller KP, Ce-Jun Wei, Yu Zhu, Klimashov A, Tkachenko YA, Bin L, Zampardi PJ, (2007) An InGaP/GaAs merged HBT-FET (BiFET) technology and applications to the design of handset power amplifiers. J Solid-State Circuits 42(10):2137–2148. doi:10.1109/JSSC.2007.904318

    Article  Google Scholar 

  • Milosevic D, van der Tang J, van Roermund A (2003) On the feasibility of applications of class E RF power amplifiers in UMTS. Proc Int Symp Circuits Syst, Bangkok, Thailand. vol 1, pp 149–152

    Google Scholar 

  • MOBILIS FP6 IST Project (2006) Mixed SiP and SoC integration of power BAW filters for digital wireless transmissions. IST specific targeted research or innovation project No 027003, http://www.ist-mobilis.org

  • Mohapatra NR, Ehwald KE, Barth R, Rucker H, Bolze D, Schley P, Schmidt D, Wulf HE (2005) The impact of channel engineering on the performance and reliability of LDMOS transistors. Proc Eur Solid-State Device Res Conf, Grenoble, France. pp 481–484. doi:10.1109/ESSDER.2005.1546689

    Google Scholar 

  • Muller D, Mourier J, Perrotin A, Szelag B, Monroy A (2005) Comparison of two types of lateral DMOSFET optimized for RF power applications. Proc Eur Solid-State Device Res Conf, Grenoble, France. pp 125–128. doi:10.1109/ESSDER.2005.1546601

    Google Scholar 

  • Myung HG, Lim J, Goodman DJ (2006) Single carrier FDMA for uplink wireless transmission. Vehi Tech Mag 1(3):30–38. doi:10.1109/MVT.2006.307304

    Article  Google Scholar 

  • Pallotta A (2006) Quad-band GSM power amplifier by optimized BCD RFLDMOS. Top Workshop on Power Amplif Wirel Commun, San Diego, USA. pp 15–17

    Google Scholar 

  • Pinon V, Hasbani F, Giry A, Pache D, Garnier C (2008) A single-chip WCDMA envelope reconstruction LDMOS PA with 130 MHz switched-mode power supply. Proc Int Solid-State Circuits Conf, San Francisco, USA. pp 564–636. doi:10.1109/ISSCC.2008.4523308

    Google Scholar 

  • Presti CD, Carrara F, Palmisano G (2008) A high-resolution 24-dBm digitally-controlled CMOS PA for multi-standard RF polar transmitters. Proc Eur Solid-State Circuits Conf, Edimburgh, UK. pp 482–485. doi:10.1109/ESSCIRC.2008.4681897

    Google Scholar 

  • Pritiskutch J, Hanson B (2000) Related LDMOS device parameters to RF performance. ST microelectronics, Application Note AN1228

    Google Scholar 

  • Raab FH (1987) Efficiency of Doherty RF power-amplifier systems. Trans Broadc, BC-33:77–83. doi:10.1109/TBC.1987.266625

    Google Scholar 

  • Ralph S, Farrell R (2007) Using high pass sigma-delta modulation for class-S power amplifiers. Proc Eur Conf Circuit Theory Des, Seville, Spain. pp 707–710. doi:10.1109/ECCTD.2007. 4529694

    Google Scholar 

  • Reynaert P, Steyaert MSJ (2005) A 1.75 GHz polar modulated CMOS RF power amplifier for GSM-EDGE. J Solid-State Circuits 40(12):2598–2608. doi:10.1109/JSSC.2005.857425

    Article  Google Scholar 

  • van Rijs F, Theeuwen SJCH (2006) Efficiency improvement of LDMOS transistors for base stations: towards the theoretical limit. Proc Electron Devices Meet, San Francisco, USA. pp 1–4. doi:10.1109/IEDM.2006.346998

    Google Scholar 

  • Rinaldi N, d’Alessandro V, De Paola FM (2006) Electrothermal phenomena in bipolar transistors and ICs: analysis, modelling, and simulation. Proc Bipolar/BiCMOS Technol Meet, Maastricht, The Netherlands. pp 1–8. doi:10.1109/BIPOL.2006.311153

    Google Scholar 

  • Scuderi A, Scuderi A, Carrara F, Palmisano G (2004) VSWR-protected silicon bipolar power amplifier with smooth power control slope. Proc Int Solid-State Circuits Conf, San Francisco, USA. vol 1, pp 194–522. doi:10.1109/ISSCC.2004.1332660

    Google Scholar 

  • Shi B, Sundström L (2000) A 200-MHz IF BiCMOS signal component separator for linear LINC transmitters. J Solid-State Circuits 35(7):987–993. doi:10.1109/4.848207

    Article  Google Scholar 

  • Shimizu T, Matsunaga Y, Sakurai S, Yoshida I, Hotta M (2005) A single-chip Si-LDMOS power amplifier for GSM. Proc Int Solid-State Circuits Conf, San Francisco, USA. pp 310–312. doi:10.1109/ISSCC.2005.1493993

    Google Scholar 

  • Sinnesbichler FX, Olbrich GR (1999) Electro-thermal large-signal modelling of SiGe HBTs. Proc Eur Microw Conf, Munich, Germany. pp 125–128. doi:10.1109/EUMA.1999.338426

    Google Scholar 

  • Sirois J, Boumaiza S, Helaoui M, Brassard G, Ghannouchi FM (2005) A robust modelling and design approach for dynamically loaded and digitally linearized Doherty amplifiers. Trans Microw Theory Tech 53(9):2875–2883. doi:10.1109/TMTT.2005.854257

    Article  Google Scholar 

  • Skotnicki T, Bœuf F (2003) Introduction à la Physique du transistor MOS. In: Gautier J (ed) Physique des dispositifs pour circuits intégrés silicium. Lavoisier, Paris

    Google Scholar 

  • Sowlati T, Rozenblit D, Pullela R, Damgaard M, McCarthy E, Koh D, Ripley D, Balteanu F, Gheorghe I (2004) Quad-band GSM/GPRS/EDGE polar loop transmitter. J Solid-State Circuits 39(12):2179–2189. doi:10.1109/JSSC.2004.836335

    Article  Google Scholar 

  • Spirito M, van der Heijden MP, Pelk M, de Vreede LCN, Zampardi PJ, Larson LE, Burghartz JN (2005) Experimental procedure to optimize out-of-band terminations for highly linear and power efficient bipolar class-AB RF amplifiers. Proc Bipolar/BiCMOS Technol Meet, Santa Barbara, USA. pp 112–115. doi:10.1109/BIPOL.2005.1555212

    Google Scholar 

  • Srirattana N, Raghavan A, Heo D, Allen PE, Laskar J (2005) Analysis and design of a high-efficiency multistage doherty power amplifier for wireless communications. Trans Microw Theory Tech 53(3, Part 1):852–860. doi:10.1109/TMTT.2004.842505

    Google Scholar 

  • Su DK, McFarland WJ (1998) An IC for linearizing RF power amplifiers using envelope elimination and restoration. J Solid-State Circuits 33(12):2252–2258. doi:10.1109/4.735710

    Article  Google Scholar 

  • Szelag B, Muller D, Mourier J, Arnaud C, Bilgen H, Judong F, Giry A, Pache D, Monroy A (2006) High RF performances asymmetric spacer NLDMOS integration in a 0.25 μm SiGe:C BiCMOS Technology. Proc Bipolar/BiCMOS Technol Meet, Maastricht, The Netherlands. pp 1–4. doi:10.1109/BIPOL.2006.311114

    Google Scholar 

  • Theeuwen SJCH, Sneijers WJAM, Klappe JGE, de Boet JAM (2008) High voltage RF LDMOS technology for broadcast applications. Proc Eur Microw Integr Circuits Conf, Amsterdam, The Netherlands. pp 24–27. doi:10.1109/EMICC.2008.4772219

    Google Scholar 

  • Tseng PD, Zhang L, Gao GB, Chang MF (2000) A 3-V monolithic SiGe HBT power amplifier for dual-mode (CDMA/AMPS) cellular handset applications. J Solid-State Circuits 35(9):1338–1344. doi:10.1109/4.868045

    Article  Google Scholar 

  • Uang R, Keyzer J, Dalvi A, Sugiyama Y, Iwamoto M, Galton I, Asbeck P (2002) RF pulse modulation and the digitally driven class C power amplifier. Top Workshop on Power Amplif Wirel Commun, La Jolla, USA

    Google Scholar 

  • Walling J, Lakdawala H, Palaskas Y, Ravi A, Degani O, Soumyanath K, Allstot D (2008) A 28.6 dBm 65 nm class-E PA with envelope restoration by pulse-width and pulse-position modulation. Proc Int Solid-State Circuits Conf, San Francisco, USA. pp 566–636. doi:10.1109/ISSCC.2008.452330

    Google Scholar 

  • Wang F, Rutledge DB (2004) 60-W L-band class-E/Fodd,2 LDMOS power amplifier using compact multilayered baluns. Top Workshop Power Amplif Wirel Commun, San Diego, USA

    Google Scholar 

  • Wang F, Kimball D, Popp J, Yang A, Lie DYC, Asbeck P, Larson L (2005) Wideband envelope elimination and restoration power amplifier with high efficiency wideband envelope amplifier for WLAN 802.11 g applications. Microw Theory Tech Symp Dig, Long Beach, USA. doi:10.1109/MWSYM.2005.1516688

    Google Scholar 

  • Wang L, Wang J, Li R, Lee P, Hu J, Qu W, Li W, Yang S (2008) Novel STI scheme and layout design to suppress the kink effect in LDMOS transistors. Semicond Sci Technol 23(7):075025. doi: 10.1088/0268-1242/23/7/075025

    Article  Google Scholar 

  • Wang PC, Huang KY, Kuo YF, Huang MC, Lu CH, Chen TM, Chang CJ, Chan KU, Yeh TH, Wang WS, Lin YH, Lee CC (2008) A 2.4 GHz +25 dBm P-1dB linear power amplifier with dynamic bias control in a 65-nm CMOS process. Proc Eur Solid-State Circuits Conf, Edimburgh, UK. pp 490–493. doi:10.1109/ESSCIRC.2008.4681899

    Google Scholar 

  • Yamamoto K, Suzuki S, Mori K, Asada T, Okuda T, Inoue A, Miura T, Chomei K, Hattori R, Yamanouchi M, Shimura T (2000) A 3.2-V operation single-chip dual-band AlGaAs/GaAs HBT MMIC power amplifier with active feedback circuit technique. J Solid-State Circuits 35(8):1109–1120. doi:10.1109/4.859499

    Article  Google Scholar 

  • Yousefzadeh V, Alarcón E, Maksimović D (2005) Efficiency optimization in linear-assisted switching power converters for envelope tracking in RF power amplifiers. Proc Int Symp Circuits Syst, Kobe, Japan. 1302–1305. doi:10.1109/ISCAS.2005.1464834

    Google Scholar 

  • Zampardi PJ (2008) GaAs technology status and perspectives for multi-band and multi-standard challenges in upcoming RF-frontends. Proc Radio Week Symp, Orlando, USA. pp 187–190. doi:10.1109/RWS.2008.4463460

    Google Scholar 

  • van Zeijl PTM, Collados M (2007) A digital envelope modulator for a WLAN OFDM polar transmitter in 90-nm CMOS. J Solid-State Circuits 42:2204–2211. doi:10.1109/JSSC.2007.905239

    Article  Google Scholar 

  • Zhang X, Larson LE, Asbeck PM, Langridge RA (2002) Analysis of power recycling techniques for RF and microwave outphasing power amplifiers. Trans Circuits and Syst–II: Analog Digit Signal Process 49(5):312–320. doi:10.1109/TCSII.2002.801411

    Article  Google Scholar 

  • Zhu Y, Gerber J, Cai Q (2002) Simulating multi-finger power HBTS. Microw J, vol 45, 3:96–104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Leyssenne .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Leyssenne, L., Kerhervé, E., Deval, Y. (2011). Mobile Phone Transmitters for Wireless Standards: Systems, Architectures and Technologies. In: Reconfigurable RF Power Amplifiers on Silicon for Wireless Handsets. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0425-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0425-1_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0424-4

  • Online ISBN: 978-94-007-0425-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics