Advertisement

The Middle Late Miocene Floras – A Window into the Regional Vegetation Surrounding a Large Caldera

  • Thomas DenkEmail author
  • Friðgeir Grímsson
  • Reinhard Zetter
  • Leifur A. Símonarson
Chapter
  • 904 Downloads
Part of the Topics in Geobiology book series (TGBI, volume 35)

Abstract

Terrestrial fossils from Late Miocene sediments in the Mókollsdalur area are mainly known for their insect fauna. Plant fossils and the sedimentological context suggest that most of the macrofossils deposited at Mókollsdalur originate from trees and shrubs that grew on the slopes around a caldera lake in the highlands. Abundant fossils of aquatic crustaceans, insects, and plants suggest that the lake and adjacent areas were a diverse ecosystem at the time of deposition. Forests covering the slopes were dominated by Fagus with a few evergreen elements in the understorey (Ilex, Rhododendron). In contrast, the palynological record points to the presence of mixed oak forests in areas behind the mountain ridge surrounding the caldera. The poor representation of herbaceous elements in the pollen record may point to a filter effect against pollen influx from surrounding areas into the lake. Slope exposure may have determined the presence of Fagus or Quercus as is also seen today in cool temperate regions of the northern hemisphere. Overall, the climate appears to be more diversified than in the older floras with relatively warmer humid conditions windward of the mountains or in sheltered areas close to the lake and cooler more continental conditions leeward of the mountains.

Keywords

Late Miocene Fossil Taxon Middle Late Pollen Influx Palynological Record 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akhani, H., & Salimian, M. (2003). An extant disjunct stand of Pterocarya fraxinifolia (Juglandaceae) in the central Zagros Mountains, W Iran. Willdenowia, 33, 113–120.Google Scholar
  2. Akhmetiev, M. A., Bratzeva, G. M., Giterman, R. E., Golubeva, L. V., & Moiseyeva, A. I. (1978). Late Cainozoic stratigraphy and flora of Iceland. Transactions of the Academy of Sciences USSR 316, 1–188.Google Scholar
  3. Áskelsson, J. (1961). Um íslenzka steingervinga. In S. Þórarinsson (Ed.), Náttúra Íslands (pp. 47–63). Reykjavík: Almenna Bókafélagið.Google Scholar
  4. Bárðarson, G. G. (1918). Um surtarbrand. Andvari, 43, 1–71.Google Scholar
  5. Barnosky, C. W. (1984). Late Miocene vegetational and climatic variations inferred from the ­pollen record in Northwest Wyoming. Science, 232, 49–51.CrossRefGoogle Scholar
  6. Camus, A. (1936-1938). Les Chênes. Monographie du genre Quercus. Tome I. Genre Quercus, sous-genre Cyclobalanopsis, sous-genre Euquercus (sections Cerris et Mesobalanus). Texte. Paris: Paul Lechevalier. 686 pp.Google Scholar
  7. Camus, A. (1938-1939). Les Chênes. Monographie du genre Quercus. Tome II. Genre Quercus, ­sous-genre Euquercus (sections Lepidobalanus et Macrobalanus). Texte. Paris: Paul Lechevalier. 830 pp.Google Scholar
  8. Camus, A. (1952-1954). Les Chênes. Monographie du genre Quercus. Tome III. Genre Quercus: sous-genre Euquercus (sections Protobalanus et Erythrobalanus) et genre Lithocarpus. Texte. Paris: Paul Lechevalier. 1314 pp.Google Scholar
  9. Denk, T., & Grimm, G. W. (2009a). Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). International Journal of Plant Sciences, 170, 926–940.CrossRefGoogle Scholar
  10. Denk, T., & Grimm, G. W. (2009b). The biogeographic history of beech trees. Review of Palaeobotany and Palynology, 158, 83–100.CrossRefGoogle Scholar
  11. Denk, T., & Grimm, G. W. (2010). The oaks of western Eurasia: Traditional classifications and evidence from two nuclear markers. Taxon, 59, 351–366.Google Scholar
  12. Denk, T., Grímsson, F., & Kvaček, Z. (2005). The Miocene floras of Iceland and their significance for late Cainozoic North Atlantic biogeography. Botanical Journal of the Linnean Society, 149, 369–417.CrossRefGoogle Scholar
  13. Denk, T., Grímsson, F., & Zetter, R. (2010). Episodic migration of oaks to Iceland: Evidence for a North Atlantic “land bridge” in the latest Miocene. American Journal of Botany, 97, 276–287.PubMedCrossRefGoogle Scholar
  14. Ellenberg, H. (1986). Vegetation Mitteleuropas mit den Alpen. Stuttgart: Ulmer. 989 pp.Google Scholar
  15. Flora of China Editorial Committee. (1999). Flora of China, Cycadaceae through Fagacaeae (Vol. 4). St. Louis: Missouri Botanical Garden Press. 453 pp.Google Scholar
  16. Friedrich, W. L., & Símonarson, L. A. (1982). Acer-Funde aus dem Neogene von Island und ihre stratigraphische Stellung. Palaeontographica B, 182, 151–166.Google Scholar
  17. Friedrich, W. L., Símonarson, L. A., & Heie, O. E. (1972). Steingervingar í millilögum í Mókollsdal. Náttúrufræðingurinn, 42, 4–17.Google Scholar
  18. Grímsson, F., & Denk, T. (2005). Fagus from the Miocene of Iceland: Systematics and biogeographical considerations. Review of Palaeobotany and Palynology, 134, 27–54.CrossRefGoogle Scholar
  19. Grímsson, F., & Denk, T. (2007). Floristic turnover in Iceland from 15 to 6 Ma extracting biogeographical signals from fossil floral assemblages. Journal of Biogeography, 34, 1490–1504.CrossRefGoogle Scholar
  20. Grímsson, F., & Símonarson, L. A. (2006). Beyki úr íslenskum setlögum. Náttúrufræðingurinn, 74, 81–102.Google Scholar
  21. Grímsson, F., Símonarson, L. A., & Friedrich, W. L. (2005). Kynlega stór aldin úr síðtertíerum setlögum á Íslandi. Náttúrufræðingurinn, 73, 15–29.Google Scholar
  22. Hegi, G. (1926). Illustrierte Flora von Mitteleuropa, part 1 (Vol. 5). Munich: J. F. Lehmanns Verlag. 674 pp.Google Scholar
  23. Heie, O. E., & Friedrich, W. L. (1971). A fossil specimen of the North American hickory aphid (Longistigma caryae Harris), found in Tertiary deposits in Iceland. Entomologica Scandinavica, 2, 74–80.CrossRefGoogle Scholar
  24. Jensen, R. J. (1997). Quercus Linnaeus sect. Lobatae Loudon, Hort. Brit., 385. 1830. Red or black oaks. In Flora of North America Editorial Committee, (Ed.), Flora of North America North of Mexico, vol. 3. Magnoliophyta: Magnoliidae and Hamamelidae (pp. 447–468). New York: Oxford University Press.Google Scholar
  25. Jóhannesson, H., & Sæmundsson, K. (1989). Geological map of Iceland 1:500 000. Bedrock Geology. Reykjavík: Icelandic Museum of Natural History and Icelandic Geodetic Survey.Google Scholar
  26. Jóhannesson, H., & Sæmundsson, K. (1998). Geological map of Iceland 1:500 000. Tectonics. Reykjavík: Icelandic Institute of Natural History.Google Scholar
  27. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.CrossRefGoogle Scholar
  28. Kvaček, Z., Velitzelos, D., & Velitzelos, E. (2002). Late Miocene flora of Vegora Macedonia N. Greece. Athens: Korali Publications. 175 pp.Google Scholar
  29. Landmælingar Íslands. (1994). Uppdráttur Íslands. Blað 35, Norðurárdalur. Scale 1:100000.Google Scholar
  30. Leopold, E. B., & Liu, G. (1994). A long pollen sequence of Neogene age, Alaska range. Quaternary International, 22(23), 103–140.CrossRefGoogle Scholar
  31. Lieth, H., Berlekamp, J., Fuest, S., & Reidiger, S. (1999). Climate Diagram World Atlas (CD-Series: Climate and Biosphere). Leiden: Backhuys Publishers.Google Scholar
  32. Mai, H. D. (1995). Tertiäre Vegetationsgeschichte Europas. Jena: Gustav Fischer. 691 pp.Google Scholar
  33. McDougall, I., Kristjansson, L., & Saemundsson, K. (1984). Magnetostratigraphy and geochronology of Northwest Iceland. Journal of Geophysical Research, 89, 7029–7060.CrossRefGoogle Scholar
  34. Mosbrugger, V., Utescher, T., & Dilcher, D. L. (2005). Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences of the United States of America, 102(42), 14964–14969.PubMedCrossRefGoogle Scholar
  35. Nixon, K. C., & Muller, C. H. (1997). Quercus Linnaeus sect. Quercus. White oaks. In Flora of North America Editorial Committee (Ed.), Flora of North America north of Mexico, vol. 3. Magnoliophyta: Magnoliidae and Hamamelidae (pp. 471–506). New York: Oxford University Press.Google Scholar
  36. Sachse, M. (2004). Die neogene Mega- und Mikroflora von Makrilia auf Kreta und ihre Aussagen zur Klima- und Vegetationsgeschichte des östlichen Mittelmeergebietes. Flora Tertiaria Mediterranea, 12, 1–254.Google Scholar
  37. Sachse, M., & Mohr, B. A. R. (1996). Eine obermiozäne Makro- und Mikroflora aus Südkreta (Griechenland), und deren paläoklimatische Interpretation – Vorläufige Bemerkungen. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 200, 149–182.Google Scholar
  38. Schwarzbach, M. (1955). Beiträge zur Klimageschichte Islands 1. Allgemeiner Überblick der Klimageschichte Islands. Neues Jahrbuch für Geologie und Paläontologie Monatsheft, 3, 97–130.Google Scholar
  39. Símonarson, L. A. (1981). Íslenskir steingervingar. In Þórarinsson, S. (Ed.), Náttúra Íslands (2nd ed., pp. 157–173). Reykjavík: Almenna bókafélagið.Google Scholar
  40. Símonarson, L. A., & Friedrich, W. L. (1983). Hlynblöð og hlynaldin í íslenskum jarðlögum. Náttúrufræðingurinn, 52, 156–174.Google Scholar
  41. Sivak, J. (1978). Histoire du genre Tsuga en Europe. D’aprés l’étude des grains de pollen actuels et fossiles. Paleobiologie Continentale, 9(1), 1–226.Google Scholar
  42. Thiede, J., & Eldholm, O. (1983). Speculations about the paleodepth of the Greenland-Scotland Ridge during late Mesozoic and Cenozoic times. In M. H. P. Bott, S. Saxow, M. Talwani, & J. Thiede (Eds.), Structure and development of the Greenland-Scotland Ridge: New methods and concepts (pp. 445–456). New York: Plenum.CrossRefGoogle Scholar
  43. Thompson, R. S., Anderson, K. H., & Bartlein, P. J. (1999). Atlas of relations between climatic parameters and distribution of important trees and shrubs in North America-Hardwoods. U.S. Geological Survey Professional Paper, 1650-B, 1–423.Google Scholar
  44. Thoroddsen, Þ. (1896). Nogle iagttagelser over surtarbrandesn geologiske forhold i det nordvestlige Island. Geologiska Föreningens i Stockholm Förhandlingar, 18, 114–154.CrossRefGoogle Scholar
  45. Utescher, T., & Mosbrugger, V. (2009). Palaeoflora Database. http://www.geologie.unibonn.de/Palaeoflora
  46. van Gelderen, D. M., de Jong, P. C., & Oterdoom, H. J. (1994). Maples of the World. Portland: Timber Press. 458 pp.Google Scholar
  47. White, J. M., Ager, T. A., Adam, D. P., Leopold, E. B., Giu, G., Jetté, H., & Schweger, C. E. (1997). An 18 million year record of vegetation and climate change in northwestern Canada and Alaska: tectonic and global climatic correlates. Palaeogeography, Palaeoclimatology, Palaeoecology, 130, 293–306.CrossRefGoogle Scholar
  48. Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Thomas Denk
    • 1
    Email author
  • Friðgeir Grímsson
    • 2
  • Reinhard Zetter
    • 2
  • Leifur A. Símonarson
    • 3
  1. 1.Department of PalaeobotanySwedish Museum of Natural HistoryStockholmSweden
  2. 2.Department of PalaeontologyUniversity of ViennaViennaAustria
  3. 3.Institute of Earth SciencesUniversity of IcelandReykjavikIceland

Personalised recommendations