Skip to main content

Modeling and Simulation of Contact-Type Electrostatic Microactuator

  • Chapter
  • First Online:
Microsystems Dynamics

Abstract

This chapter presents 3-D FE modeling and simulation of dynamics of microcantilever operating in ambient air near fixed surface. The phenomenon of squeeze-film damping is further analyzed numerically. Frequency response and transient analyses are carried out in order to determine influence of squeeze-film damping on free and forced vibrations of the microcantilever under different ambient air and vibration excitation conditions. Subsequently numerical analysis of the 3-D microcantilever under the effect of electrostatic field is provided. Static and dynamic simulations are performed in order to study important operational characteristics. Finally, the chapter is concluded with FE modeling of the microcantilever with incorporated adhesive-repulsive contact model, which uses a “classical” linear elastic link element combined with the van der Waals force-based term that accounts for the influence of dominant intermolecular interactions in the contact zone. This model is then used in conjunction with squeeze-film damping formulation in order to predict behavior of contact bouncing under different air damping and contact conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nunes R, Adams JH, Ammons M et al (1990) ASM handbook, Vol. 02 – Properties and selection – nonferrous alloys and special-purpose materials. ASM International

    Google Scholar 

  2. Rebeiz GB (2003) RF MEMS: theory, design, and technology. Wiley-Interscience, Hoboken, NJ

    Book  Google Scholar 

  3. Gad-el-Hak M (2006) MEMS handbook. CRC Press, Boca Raton, FL

    Google Scholar 

  4. Maluf N, Williams K (2004) An introduction to microelectromechanical systems engineering. Artech House, Boston, MA

    Google Scholar 

  5. Bao M, Yang H (2007) Squeeze film air damping in MEMS (review). Sensor Actuat A Phys 136:3–27

    Article  Google Scholar 

  6. Lee JH, Lee ST, Yao CM, Fang W (2007) Comments on the size effects on the microcantilever quality factors in free air space. J Micromech Microeng 17:139–147

    Article  Google Scholar 

  7. Hosaka H, Itao K, Kuroda S (1995) Damping characteristics of beam-shaped micro-oscillators. Sensor Actuat A Phys 49:87–95

    Article  Google Scholar 

  8. Senturia SD (2001) Microsystem design. Kluwer Academic, Norwell, MA

    Google Scholar 

  9. Park YH, Park KC (2004) High-fidelity modeling of MEMS resonators, part I, anchor loss mechanisms through substrate. J Microelectromech S 13:238–247

    Article  Google Scholar 

  10. Pelesko JA, Bernstein DH (2003) Modeling MEMS and NEMS. Chapman Hall and CRC Press, Boca Raton, FL

    MATH  Google Scholar 

  11. Hamrock BJ, Schmid SR, Jacobson BO (2004) Fundamentals of fluid film lubrication. Marcel Dekker, New York

    Book  Google Scholar 

  12. Starr JB (1990) Squeeze-film damping in solid-state accelerometers. In: Proceedings of the IEEE solid-state sensor and actuator workshop, Hilton Head Island, SC, June 1990, pp 44–47

    Google Scholar 

  13. Tilmans HAC, Legtenberg R (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators (part I & II). Sensor Actuat A Phys 45:67–84

    Article  Google Scholar 

  14. Kelly SG (2000) Fundamentals of mechanical vibrations. McGraw-Hill, Boston, MA

    Google Scholar 

  15. Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech S 6(2):107–118

    Article  Google Scholar 

  16. Gupta RK (1997) Electrostatic pull-in test structure design for mechanical property characterization of microelectromechanical systems (MEMS). Dissertation, M.I.T.

    Google Scholar 

  17. Spearing SM (2000) Materials issues in microelectromechanical systems (MEMS). Acta Mater 48:179–196

    Article  Google Scholar 

  18. Fritz T, Cho HS, Hemker KJ, Mokwa W, Schnakenberg U (2002) Characterization of electroplated nickel. Microsyst Technol 9:87–91

    Article  Google Scholar 

  19. Mazza E, Abel S, Dual J (1996) Experimental determination of mechanical properties of Ni and Ni-Fe microbars. Microsyst Technol 2:197–202

    Article  Google Scholar 

  20. Sharpe W, Lavan D, Edwards R (1997) Mechanical properties of LIGA-deposited Nickel for MEMS. In: Proceedings of international conference on solid state sensors and actuators, 1997, pp 607–610

    Google Scholar 

  21. Bucheit T, Christenson T, Schmale D, Lavan D (1998) Understanding and tailoring the mechanical properties of LIGA fabricated materials. In: Proceedings of MRS symposium, vol 546, 1998, pp 121–126

    Google Scholar 

  22. Kobrinsky MJ, Deutsch ER, Senturia SD (2000) Effect of compliance and residual stress on the shape of doubly supported surface-micromachined beams. J Microelectromech S 9:361–369

    Article  Google Scholar 

  23. Lishchynska M, Cordero N, Slattery O, O’Mahony C (2005) Modelling electrostatic behaviour of microcantilevers incorporating residual stress gradient and non-ideal anchors. J Micromech Microeng 15:10–14

    Article  Google Scholar 

  24. Bhushan B (2004) Springer handbook of nanotechnology. Springer-Verlag, Berlin, Germany

    Book  Google Scholar 

  25. Israelachvili JN (1998) Intermolecular and surface forces. Academic, London, UK

    Google Scholar 

  26. Majumder S, McGruer NE, Adams GG, Zavracky PM, Morrison RH (2001) Study of contacts in an electrostatically actuated microswitch. Sensor Actuat A Phys 93:19–26

    Article  Google Scholar 

  27. Hah D, Yoon E, Hong S (2001) A low voltage actuated microelectromechanical switch for RF application. Jpn J Appl Phys 40(4B):2721–2724

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vytautas Ostasevicius .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ostasevicius, V., Dauksevicius, R. (2010). Modeling and Simulation of Contact-Type Electrostatic Microactuator. In: Microsystems Dynamics. Intelligent Systems, Control and Automation: Science and Engineering, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9701-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9701-9_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9700-2

  • Online ISBN: 978-90-481-9701-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics