Skip to main content

Breathing New Life into Old Drugs: Indication Discovery by Systems Directed Therapy

  • Chapter
  • First Online:
From Molecular to Modular Tumor Therapy

Part of the book series: The Tumor Microenvironment ((TTME,volume 3))

Abstract

In the treatment of chemorefractory and metastatic cancer new ­concepts such as stroma-targeted and antiangiogenetic strategies emerge as powerful alternatives to conventional regimes. In this context, several well established drugs such as IMiDs, COX 2 inhibitors, mTOR antagonists, and PPARγ agonists attract increasing attention. Beyond their primary field of indication, these drugs have demonstrated broad anti-tumoral activity such as induction of apoptosis and inhibition of tumor cell proliferation. In addition, by interrupting the tumor-stroma ­interaction, these agents also reveal antiangiogenetic and immuno-modulating effects. Compared to conventional high dose chemotherapy, stroma-targeted ­strategies are thought to be less susceptible to the development of drug resistance and to cause less ­toxicity. Taking into account that combinatorial use and repurposing of biomodulating drugs might potentiate the antineoplastic effects without causing life threatening toxicities, targeting the tumor stroma is judged to be a promising approach in tumor palliation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emmenegger U, Man S, Shaked Y et al (2004) A comparative analysis of low-dose ­metronomic cyclophosphamide reveals absent or low-grade toxicity on tissues highly sensitive to the toxic effects of maximum tolerated dose regimens. Cancer Res 64:3994–4000

    Article  PubMed  CAS  Google Scholar 

  2. Hafner C, Reichle A, Vogt T (2005) New indications for established drugs: combined tumor-stroma-targeted cancer therapy with PPARgamma agonists, COX-2 inhibitors, mTOR antagonists and metronomic chemotherapy. Curr Cancer Drug Targets 5:393–419

    Article  PubMed  CAS  Google Scholar 

  3. Kerbel RS (1991) Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. Bioessays 13:31–36

    Article  PubMed  CAS  Google Scholar 

  4. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  5. Cao Y (2004) Antiangiogenic cancer therapy. Semin Cancer Biol 14:139–145

    Article  PubMed  CAS  Google Scholar 

  6. Teo SK (2005) Properties of thalidomide and its analogues: implications for anticancer therapy. Aaps J 7:E14–19

    Article  PubMed  CAS  Google Scholar 

  7. Hashimoto Y (2002) Structural development of biological response modifiers based on thalidomide. Bioorg Med Chem 10:461–479

    Article  PubMed  CAS  Google Scholar 

  8. Kalmadi S, Baz R, Mahindra A (2007) Lenalidomide: the emerging role of a novel targeted agent in malignancies. Drugs Today (Barc) 43:85–95

    Article  CAS  Google Scholar 

  9. Hafner C, Landthaler M, Vogt T (2006) Stroma-targeted palliative tumor therapy with biomodulators. J Dtsch Dermatol Ges 4:242–253; quiz 254–245

    Google Scholar 

  10. Li M, Sun W, Yang YP et al (2009) In vitro anticancer property of a novel thalidomide analogue through inhibition of NF-kappaB activation in HL-60 cells. Acta Pharmacol Sin 30:134–140

    Article  PubMed  CAS  Google Scholar 

  11. Moreira AL, Sampaio EP, Zmuidzinas A et al (1993) Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med 177:1675–1680

    Article  PubMed  CAS  Google Scholar 

  12. Geitz H, Handt S, Zwingenberger K (1996) Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade. Immunopharmacology 31:213–221

    Article  PubMed  CAS  Google Scholar 

  13. Liu WM, Henry JY, Meyer B et al (2009) Inhibition of metastatic potential in colorectal carcinoma in vivo and in vitro using immunomodulatory drugs (IMiDs). Br J Cancer 101:803–812

    Article  PubMed  CAS  Google Scholar 

  14. Zhang S, Li M, Gu Y et al (2008) Thalidomide influences growth and vasculogenic mimicry channel formation in melanoma. J Exp Clin Cancer Res 27:60

    Article  PubMed  CAS  Google Scholar 

  15. Efstathiou JA, Chen MH, Catalona WJ et al (2006) Prostate-specific antigen-based serial screening may decrease prostate cancer-specific mortality. Urology 68:342–347

    Article  PubMed  Google Scholar 

  16. Richardson PG, Blood E, Mitsiades CS et al (2006) A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 108:3458–3464

    Article  PubMed  CAS  Google Scholar 

  17. Richardson P, Jagannath S, Hussein M et al (2009) Safety and efficacy of single-agent lenalidomide in patients with relapsed and refractory multiple myeloma. Blood 114:772–778

    Article  PubMed  CAS  Google Scholar 

  18. Dimopoulos M, Spencer A, Attal M et al (2007) Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 357:2123–2132

    Article  PubMed  CAS  Google Scholar 

  19. Rajkumar SV, Jacobus S, Callander NS et al Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol 11:29–37

    Google Scholar 

  20. Hwu WJ, Krown SE, Menell JH et al (2003) Phase II study of temozolomide plus thalidomide for the treatment of metastatic melanoma. J Clin Oncol 21:3351–3356

    Article  PubMed  CAS  Google Scholar 

  21. Solti M, Berd D, Mastrangelo MJ et al (2007) A pilot study of low-dose thalidomide and interferon alpha-2b in patients with metastatic melanoma who failed prior treatment. Melanoma Res 17:225–231

    Article  PubMed  CAS  Google Scholar 

  22. Ott PA, Chang JL, Oratz R et al (2009) Phase II trial of dacarbazine and thalidomide for the treatment of metastatic melanoma. Chemotherapy 55:221–227

    Article  PubMed  CAS  Google Scholar 

  23. Kuruvilla J, Song K, Mollee P et al (2006) A phase II study of thalidomide and vinblastine for palliative patients with Hodgkin’s lymphoma. Hematology 11:25–29

    Article  PubMed  CAS  Google Scholar 

  24. Lee SM, James L, Buchler T et al (2007) Phase II trial of thalidomide with chemotherapy and as maintenance therapy for patients with poor prognosis small-cell lung cancer. Lung Cancer

    Google Scholar 

  25. Jazieh AR, Komrokji R, Gupta A et al (2009) Phase II trial of thalidomide, irinotecan and gemcitabine in chemonaive patients with advanced non-small cell lung cancer. Cancer Invest 27:932–936

    Article  PubMed  CAS  Google Scholar 

  26. Kay NE, Shanafelt TD, Call TG et al (2009) N9986: a phase II trial of thalidomide in patients with relapsed chronic lymphocytic leukemia. Leuk Lymphoma 50:588–592

    Article  PubMed  CAS  Google Scholar 

  27. Habermann TM, Lossos IS, Justice G et al (2009) Lenalidomide oral monotherapy produces a high response rate in patients with relapsed or refractory mantle cell lymphoma. Br J Haematol 145:344–349

    Article  PubMed  CAS  Google Scholar 

  28. Rubegni P, Sbano P, De Aloe G et al (2007) Thalidomide in the treatment of Kaposi’s sarcoma. Dermatology 215:240–244

    Article  PubMed  CAS  Google Scholar 

  29. Gordinier ME, Dizon DS, Weitzen S et al (2007) Oral thalidomide as palliative chemotherapy in women with advanced ovarian cancer. J Palliat Med 10:61–66

    Article  PubMed  Google Scholar 

  30. Lee SM, Rudd R, Woll PJ et al (2009) Randomized double-blind placebo-controlled trial of thalidomide in combination with gemcitabine and carboplatin in advanced non-small-cell lung cancer. J Clin Oncol

    Google Scholar 

  31. Lee SM, Woll PJ, Rudd R et al (2009) Anti-angiogenic therapy using thalidomide combined with chemotherapy in small cell lung cancer: a randomized, double-blind, placebo-controlled trial. J Natl Cancer Inst 101:1049–1057

    Article  PubMed  CAS  Google Scholar 

  32. Sanborn R, Blanke CD (2005) Cyclooxygenase-2 inhibition in colorectal cancer: boom or bust? Semin Oncol 32:69–75

    Article  PubMed  CAS  Google Scholar 

  33. Zha S, Yegnasubramanian V, Nelson WG et al (2004) Cyclooxygenases in cancer: progress and perspective. Cancer Lett 215:1–20

    Article  PubMed  CAS  Google Scholar 

  34. DeWitt DL (1999) Cox-2-selective inhibitors: the new super aspirins. Mol Pharmacol 55:625–631

    PubMed  CAS  Google Scholar 

  35. Chen JC, Chen Y, Su YH et al (2007) Celecoxib increased expression of 14-3-3sigma and induced apoptosis of glioma cells. Anticancer Res 27:2547–2554

    PubMed  CAS  Google Scholar 

  36. Dandekar DS, Lopez M, Carey RI et al (2005) Cyclooxygenase-2 inhibitor celecoxib augments chemotherapeutic drug-induced apoptosis by enhancing activation of caspase-3 and -9 in prostate cancer cells. Int J Cancer 115:484–492

    Article  PubMed  CAS  Google Scholar 

  37. Kim SH, Song SH, Kim SG et al (2004) Celecoxib induces apoptosis in cervical cancer cells independent of cyclooxygenase using NF-kappaB as a possible target. J Cancer Res Clin Oncol 130:551–560

    Article  PubMed  CAS  Google Scholar 

  38. Bundscherer A, Hafner C, Maisch T et al (2008) Antiproliferative and proapoptotic effects of rapamycin and celecoxib in malignant melanoma cell lines. Oncol Rep 19:547–553

    PubMed  CAS  Google Scholar 

  39. Wang L, Liu LH, Shan BE et al (2009) Celecoxib promotes apoptosis of breast cancer cell line MDA-MB-231 through down-regulation of the NF-kappaB pathway. Ai Zheng 28:569–574

    PubMed  CAS  Google Scholar 

  40. Yoshinaka R, Shibata MA, Morimoto J et al (2006) COX-2 inhibitor celecoxib suppresses tumor growth and lung metastasis of a murine mammary cancer. Anticancer Res 26:4245–4254

    PubMed  CAS  Google Scholar 

  41. Bock JM, Menon SG, Sinclair LL et al (2007) Celecoxib toxicity is cell cycle phase specific. Cancer Res 67:3801–3808

    Article  PubMed  CAS  Google Scholar 

  42. Grosch S, Tegeder I, Niederberger E et al (2001) COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. Faseb J 15:2742–2744

    PubMed  CAS  Google Scholar 

  43. Han C, Leng J, Demetris AJ et al (2004) Cyclooxygenase-2 promotes human cholangiocarcinoma growth: evidence for cyclooxygenase-2-independent mechanism in celecoxib-mediated induction of p21waf1/cip1 and p27kip1 and cell cycle arrest. Cancer Res 64:1369–1376

    Article  PubMed  CAS  Google Scholar 

  44. Liu H, Huang P, Xu X et al (2009) Anticancer effect of celecoxib via COX-2 dependent and independent mechanisms in human gastric cancers cells. Dig Dis Sci 54:1418–1424

    Article  PubMed  CAS  Google Scholar 

  45. Vogt T, McClelland M, Jung B et al (2001) Progression and NSAID-induced apoptosis in malignant melanomas are independent of cyclooxygenase II. Melanoma Res 11:587–599

    Article  PubMed  CAS  Google Scholar 

  46. Williams CS, Watson AJ, Sheng H et al (2000) Celecoxib prevents tumor growth in vivo without toxicity to normal gut: lack of correlation between in vitro and in vivo models. Cancer Res 60:6045–6051

    PubMed  CAS  Google Scholar 

  47. Kulp SK, Yang YT, Hung CC et al (2004) 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res 64:1444–1451

    Article  PubMed  CAS  Google Scholar 

  48. Schiffmann S, Maier TJ, Wobst I et al (2008) The anti-proliferative potency of celecoxib is not a class effect of coxibs. Biochem Pharmacol 76:179–187

    Article  PubMed  CAS  Google Scholar 

  49. Sooriakumaran P, Coley HM, Fox SB et al (2009) A randomized controlled trial investigating the effects of celecoxib in patients with localized prostate cancer. Anticancer Res 29:1483–1488

    PubMed  CAS  Google Scholar 

  50. Ragel BT, Jensen RL, Gillespie DL et al (2007) Celecoxib inhibits meningioma tumor growth in a mouse xenograft model. Cancer 109:588–597

    Article  PubMed  CAS  Google Scholar 

  51. Zhou Y, Ran J, Tang C et al (2007) Effect of celecoxib on E-cadherin, VEGF, Microvessel density and apoptosis in gastric cancer. Cancer Biol Ther 6:269–275

    PubMed  Google Scholar 

  52. Soo RA, Wu J, Aggarwal A et al (2006) Celecoxib reduces microvessel density in patients treated with nasopharyngeal carcinoma and induces changes in gene expression. Ann Oncol 17:1625–1630

    Article  PubMed  CAS  Google Scholar 

  53. Masferrer JL, Leahy KM, Koki AT et al (2000) Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60:1306–1311

    PubMed  CAS  Google Scholar 

  54. Liu H, Yang Y, Xiao J et al (2009) Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via VEGF-C. Anat Rec (Hoboken) 292:1577–1583

    Article  CAS  Google Scholar 

  55. Park W, Oh YT, Han JH et al (2008) Antitumor enhancement of celecoxib, a selective Cyclooxygenase-2 inhibitor, in a Lewis lung carcinoma expressing Cyclooxygenase-2. J Exp Clin Cancer Res 27:66

    Article  PubMed  CAS  Google Scholar 

  56. Evans JF, Kargman SL (2004) Cancer and cyclooxygenase-2 (COX-2) inhibition. Curr Pharm Des 10:627–634

    Article  PubMed  CAS  Google Scholar 

  57. Harizi H, Juzan M, Pitard V et al (2002) Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J Immunol 168:2255–2263

    PubMed  CAS  Google Scholar 

  58. Sharma S, Yang SC, Zhu L et al (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65:5211–5220

    Article  PubMed  CAS  Google Scholar 

  59. Kundu N, Walser TC, Ma X et al (2005) Cyclooxygenase inhibitors modulate NK activities that control metastatic disease. Cancer Immunol Immunother 54:981–987

    Article  PubMed  CAS  Google Scholar 

  60. Stoll BR, Migliorini C, Kadambi A et al (2003) A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors: implications for antiangiogenic therapy. Blood 102:2555–2561

    Article  PubMed  CAS  Google Scholar 

  61. Harris RE (2009) Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology 17:55–67

    Article  PubMed  CAS  Google Scholar 

  62. Parada B, Sereno J, Reis F et al (2009) Anti-inflammatory, anti-proliferative and antioxidant profiles of selective cyclooxygenase-2 inhibition as chemoprevention for rat bladder carcinogenesis. Cancer Biol Ther 8

    Google Scholar 

  63. D’Arca D, Lenoir J, Wildemore B et al (2009) Prevention of urinary bladder cancer in the FHIT knock-out mouse with Rofecoxib, a Cox-2 inhibitor. Urol Oncol

    Google Scholar 

  64. Vogt T, Hafner C, Bross K et al (2003) Antiangiogenetic therapy with pioglitazone, rofecoxib, and metronomic trofosfamide in patients with advanced malignant vascular tumors. Cancer 98:2251–2256

    Article  PubMed  CAS  Google Scholar 

  65. Levin VA, Giglio P, Puduvalli VK et al (2005) Combination chemotherapy with 13-cis-retinoic acid and celecoxib in the treatment of glioblastoma multiforme. J Neurooncol 1–6

    Google Scholar 

  66. Hau P, Kunz-Schughart L, Bogdahn U et al (2007) Low-dose chemotherapy in combination with COX-2 inhibitors and PPAR-gamma agonists in recurrent high-grade gliomas - a phase II study. Oncology 73:21–25

    Article  PubMed  CAS  Google Scholar 

  67. Reichle A, Vogt T, Kunz-Schughart L et al (2005) Anti-inflammatory and angiostatic therapy in chemorefractory multisystem Langerhans’ cell histiocytosis of adults. Br J Haematol 128:730–732

    Article  PubMed  CAS  Google Scholar 

  68. Altorki NK, Keresztes RS, Port JL et al (2003) Celecoxib, a selective cyclo-oxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. J Clin Oncol 21:2645–2650

    Article  PubMed  CAS  Google Scholar 

  69. Coras B, Hafner C, Reichle A et al (2004) Antiangiogenic therapy with pioglitazone, rofecoxib, and trofosfamide in a patient with endemic kaposi sarcoma. Arch Dermatol 140:1504–1507

    Article  PubMed  Google Scholar 

  70. Reichle A, Bross K, Vogt T et al (2004) Pioglitazone and rofecoxib combined with angiostatically scheduled trofosfamide in the treatment of far-advanced melanoma and soft tissue sarcoma. Cancer 101:2247–2256

    Article  PubMed  CAS  Google Scholar 

  71. Ferrari V, Valcamonico F, Amoroso V et al (2006) Gemcitabine plus celecoxib (GECO) in advanced pancreatic cancer: a phase II trial. Cancer Chemother Pharmacol 57:185–190

    Article  PubMed  CAS  Google Scholar 

  72. Buckstein R, Kerbel RS, Shaked Y et al (2006) High-dose celecoxib and metronomic “Low-dose” cyclophosphamide is an effective and safe therapy in patients with relapsed and refractory aggressive histology non-hodgkin’s lymphoma. Clin Cancer Res 12:5190–5198

    Article  PubMed  CAS  Google Scholar 

  73. Farley JH, Truong V, Goo E et al (2006) A randomized double-blind placebo-controlled phase II trial of the cyclooxygenase-2 inhibitor Celecoxib in the treatment of cervical dysplasia. Gynecol Oncol 103:425–430

    Article  PubMed  CAS  Google Scholar 

  74. Mantovani G, Maccio A, Madeddu C et al (2009) Phase II nonrandomized study of the efficacy and safety of COX-2 inhibitor celecoxib on patients with cancer cachexia. J Mol Med

    Google Scholar 

  75. Kim SH, Song YC, Song YS (2009) Celecoxib potentiates the anticancer effect of cisplatin on vulvar cancer cells independently of cyclooxygenase. Ann N Y Acad Sci 1171:635–641

    Article  PubMed  CAS  Google Scholar 

  76. Zhao S, Cai J, Bian H et al (2009) Synergistic inhibition effect of tumor growth by using celecoxib in combination with oxaliplatin. Cancer Invest 27:636–640

    Article  PubMed  CAS  Google Scholar 

  77. Gadgeel SM, Wozniak A, Ruckdeschel JC et al (2008) Phase II study of docetaxel and celecoxib, a cyclooxygenase-2 inhibitor, in elderly or poor performance status (PS2) patients with advanced non-small cell lung cancer. J Thorac Oncol 3:1293–1300

    Article  PubMed  Google Scholar 

  78. Schneider BJ, Kalemkerian GP, Kraut MJ et al (2008) Phase II study of celecoxib and docetaxel in non-small cell lung cancer (NSCLC) patients with progression after platinum-based therapy. J Thorac Oncol 3:1454–1459

    Article  PubMed  Google Scholar 

  79. Huang S, Houghton PJ (2003) Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 3:371–377

    Article  PubMed  CAS  Google Scholar 

  80. DeGraffenried LA, Fulcher L, Friedrichs WE et al (2004) Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. Ann Oncol 15:1510–1516

    Article  PubMed  CAS  Google Scholar 

  81. Douros J, Suffness M (1981) New natural products under development at the National Cancer Institute. Recent Results Cancer Res 76:153–175

    Article  PubMed  CAS  Google Scholar 

  82. Eng CP, Sehgal SN, Vezina C (1984) Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot (Tokyo) 37:1231–1237

    Article  CAS  Google Scholar 

  83. Hidalgo M, Rowinsky EK (2000) The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19:6680–6686

    Article  PubMed  CAS  Google Scholar 

  84. Mayerhofer M, Aichberger KJ, Florian S et al (2005) Identification of mTOR as a novel bifunctional target in chronic myeloid leukemia: dissection of growth-inhibitory and VEGF-suppressive effects of rapamycin in leukemic cells. Faseb J 19:960–962

    PubMed  CAS  Google Scholar 

  85. Namba R, Young LJ, Abbey CK et al (2006) Rapamycin inhibits growth of premalignant and malignant mammary lesions in a mouse model of ductal carcinoma in situ. Clin Cancer Res 12:2613–2621

    Article  PubMed  CAS  Google Scholar 

  86. Vega F, Medeiros LJ, Leventaki V et al (2006) Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 66:6589–6597

    Article  PubMed  CAS  Google Scholar 

  87. Decker T, Hipp S, Ringshausen I et al (2003) Rapamycin-induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin. Blood 101:278–285

    Article  PubMed  CAS  Google Scholar 

  88. Boffa DJ, Luan F, Thomas D et al (2004) Rapamycin inhibits the growth and metastatic progression of non-small cell lung cancer. Clin Cancer Res 10:293–300

    Article  PubMed  CAS  Google Scholar 

  89. Luan FL, Ding R, Sharma VK et al (2003) Rapamycin is an effective inhibitor of human renal cancer metastasis. Kidney Int 63:917–926

    Article  PubMed  CAS  Google Scholar 

  90. Zhou C, Gehrig PA, Whang YE et al (2003) Rapamycin inhibits telomerase activity by decreasing the hTERT mRNA level in endometrial cancer cells. Mol Cancer Ther 2:789–795

    PubMed  CAS  Google Scholar 

  91. Ma BB, Lui VW, Hui EP et al (2009) The activity of mTOR inhibitor RAD001 (everolimus) in nasopharyngeal carcinoma and cisplatin-resistant cell lines. Invest New Drugs

    Google Scholar 

  92. Shafer A, Zhou C, Gehrig PA et al (2009) Rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and induction of apoptosis. Int J Cancer

    Google Scholar 

  93. Schlosshauer PW, Li W, Lin KT et al (2009) Rapamycin by itself and additively in combination with carboplatin inhibits the growth of ovarian cancer cells. Gynecol Oncol 114:516–522

    Article  PubMed  CAS  Google Scholar 

  94. Bae-Jump VL, Zhou C, Boggess JF et al (2009) Synergistic effect of rapamycin and cisplatin in endometrial cancer cells. Cancer 115:3887–3896

    Article  PubMed  CAS  Google Scholar 

  95. Matsuzaki T, Yashiro M, Kaizaki R et al (2009) Synergistic antiproliferative effect of mTOR inhibitors in combination with 5-fluorouracil in scirrhous gastric cancer. Cancer Sci

    Google Scholar 

  96. Land SC, Tee AR (2007) Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem 282:20534–20543

    Article  PubMed  CAS  Google Scholar 

  97. Wang Y, Zhao Q, Ma S et al (2007) Sirolimus inhibits human pancreatic carcinoma cell proliferation by a mechanism linked to the targeting of mTOR/HIF-1 alpha/VEGF signaling. IUBMB Life 59:717–721

    Article  PubMed  CAS  Google Scholar 

  98. Guba M, von Breitenbuch P, Steinbauer M et al (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135

    Article  PubMed  CAS  Google Scholar 

  99. Zhang P, Huang L, Zhu GX et al (2006) Sirolimus inhibits the differentiation, proliferation and migration of endothelial progenitor cells in vitro. Zhonghua Xin Xue Guan Bing Za Zhi 34:1021–1025

    PubMed  Google Scholar 

  100. Chen TG, Chen JZ, Wang XX (2006) Effects of rapamycin on number activity and eNOS of endothelial progenitor cells from peripheral blood. Cell Prolif 39:117–125

    Article  PubMed  CAS  Google Scholar 

  101. Bruns CJ, Koehl GE, Guba M et al (2004) Rapamycin-induced endothelial cell death and tumor vessel thrombosis potentiate cytotoxic therapy against pancreatic cancer. Clin Cancer Res 10:2109–2119

    Article  PubMed  CAS  Google Scholar 

  102. Huynh H, Chow KH, Soo KC et al (2009) RAD001 (everolimus) inhibits tumour growth in xenograft models of human hepatocellular carcinoma. J Cell Mol Med 13:1371–1380

    Article  PubMed  CAS  Google Scholar 

  103. Amato RJ, Jac J, Giessinger S et al (2009) A phase 2 study with a daily regimen of the oral mTOR inhibitor RAD001 (everolimus) in patients with metastatic clear cell renal cell cancer. Cancer 115:2438–2446

    Article  PubMed  CAS  Google Scholar 

  104. Motzer RJ, Hudes GR, Curti BD et al (2007) Phase I/II trial of temsirolimus combined with interferon alfa for advanced renal cell carcinoma. J Clin Oncol 25:3958–3964

    Article  PubMed  CAS  Google Scholar 

  105. Milton DT, Riely GJ, Azzoli CG et al (2007) Phase 1 trial of everolimus and gefitinib in patients with advanced nonsmall-cell lung cancer. Cancer 110:599–605

    Article  PubMed  CAS  Google Scholar 

  106. Hudes GR, Berkenblit A, Feingold J et al (2009) Clinical trial experience with temsirolimus in patients with advanced renal cell carcinoma. Semin Oncol 36(Suppl 3):S26–36

    Article  PubMed  CAS  Google Scholar 

  107. Miller K (2009) First-line therapy of metastatic renal cell carcinoma – update 2009. Onkologie 33(Suppl 1):5–9

    Google Scholar 

  108. Ansell SM, Inwards DJ, Rowland KM, Jr. et al (2008) Low-dose, single-agent temsirolimus for relapsed mantle cell lymphoma: a phase 2 trial in the North Central Cancer Treatment Group. Cancer 113:508–514

    Article  PubMed  CAS  Google Scholar 

  109. Hess G, Herbrecht R, Romaguera J et al (2009) Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol 27:3822–3829

    Article  PubMed  CAS  Google Scholar 

  110. Yee KW, Zeng Z, Konopleva M et al (2006) Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 12:5165–5173

    Article  PubMed  CAS  Google Scholar 

  111. Stallone G, Schena A, Infante B et al (2005) Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med 352:1317–1323

    Article  PubMed  CAS  Google Scholar 

  112. Hartford CM, Desai AA, Janisch L et al (2009) A phase I trial to determine the safety, tolerability, and maximum tolerated dose of deforolimus in patients with advanced malignancies. Clin Cancer Res 15:1428–1434

    Article  PubMed  CAS  Google Scholar 

  113. Rizzieri DA, Feldman E, Dipersio JF et al (2008) A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 14:2756–2762

    Article  PubMed  CAS  Google Scholar 

  114. Grommes C, Landreth GE, Heneka MT (2004) Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol 5:419–429

    Article  PubMed  CAS  Google Scholar 

  115. Yang FG, Zhang ZW, Xin DQ et al (2005) Peroxisome proliferator-activated receptor gamma ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines. Acta Pharmacol Sin 26:753–761

    Article  PubMed  CAS  Google Scholar 

  116. Lin MS, Chen WC, Bai X et al (2007) Activation of peroxisome proliferator-activated receptor gamma inhibits cell growth via apoptosis and arrest of the cell cycle in human colorectal cancer. J Dig Dis 8:82–88

    Article  PubMed  CAS  Google Scholar 

  117. Yang YC, Tsao YP, Ho TC et al (2007) Peroxisome proliferator-activated receptor-gamma agonists cause growth arrest and apoptosis in human ovarian carcinoma cell lines. Int J Gynecol Cancer 17:418–425

    Article  PubMed  Google Scholar 

  118. Abe A, Kiriyama Y, Hirano M et al (2002) Troglitazone suppresses cell growth of KU812 cells independently of PPARgamma. Eur J Pharmacol 436:7–13

    Article  PubMed  CAS  Google Scholar 

  119. Li X, Yang X, Xu Y et al (2009) Troglitazone inhibits cell proliferation by attenuation of epidermal growth factor receptor signaling independent of peroxisome proliferator-activated receptor gamma. Cell Res 19:720–732

    Article  PubMed  CAS  Google Scholar 

  120. Lyles BE, Akinyeke TO, Moss PE et al (2009) Thiazolidinediones regulate expression of cell cycle proteins in human prostate cancer cells via PPARgamma-dependent and PPARgamma-independent pathways. Cell Cycle 8:268–277

    Article  PubMed  CAS  Google Scholar 

  121. Ferruzzi P, Ceni E, Tarocchi M et al (2005) Thiazolidinediones inhibit growth and invasiveness of the human adrenocortical cancer cell line H295R. J Clin Endocrinol Metab 90:1332–1339

    Article  PubMed  CAS  Google Scholar 

  122. Zang C, Wachter M, Liu H et al (2003) Ligands for PPARgamma and RAR cause induction of growth inhibition and apoptosis in human glioblastomas. J Neurooncol 65:107–118

    Article  PubMed  Google Scholar 

  123. Nam DH, Ramachandran S, Song DK et al (2007) Growth inhibition and apoptosis induced in human leiomyoma cells by treatment with the PPAR gamma ligand ciglitizone. Mol Hum Reprod 13:829–836

    Article  PubMed  CAS  Google Scholar 

  124. Saiki M, Hatta Y, Yamazaki T et al (2006) Pioglitazone inhibits the growth of human leukemia cell lines and primary leukemia cells while sparing normal hematopoietic stem cells. Int J Oncol 29:437–443

    PubMed  CAS  Google Scholar 

  125. Liu Y, Meng Y, Liu H et al (2006) Growth inhibition and differentiation induced by peroxisome proliferator activated receptor gamma ligand rosiglitazone in human melanoma cell line a375. Med Oncol 23:393–402

    Article  PubMed  Google Scholar 

  126. Frohlich E, Machicao F, Wahl R (2005) Action of thiazolidinediones on differentiation, proliferation and apoptosis of normal and transformed thyrocytes in culture. Endocr Relat Cancer 12:291–303

    Article  PubMed  CAS  Google Scholar 

  127. Hirase N, Yanase T, Mu Y et al (1999) Thiazolidinedione induces apoptosis and monocytic differentiation in the promyelocytic leukemia cell line HL60. Oncology 57(Suppl 2):17–26

    Article  PubMed  CAS  Google Scholar 

  128. Bundscherer A, Reichle A, Hafner C et al (2009) Targeting the tumor stroma with peroxisome proliferator activated receptor (PPAR) agonists. Anticancer Agents Med Chem 9:816–821

    Article  PubMed  CAS  Google Scholar 

  129. Galli A, Ceni E, Crabb DW et al (2004) Antidiabetic thiazolidinediones inhibit invasiveness of pancreatic cancer cells via PPARgamma independent mechanisms. Gut 53:1688–1697

    Article  PubMed  CAS  Google Scholar 

  130. Shen D, Deng C, Zhang M (2007) Peroxisome proliferator-activated receptor gamma agonists inhibit the proliferation and invasion of human colon cancer cells. Postgrad Med J 83:414–419

    Article  PubMed  CAS  Google Scholar 

  131. Jan HJ, Lee CC, Lin YM et al (2009) Rosiglitazone reduces cell invasiveness by inducing MKP-1 in human U87MG glioma cells. Cancer Lett 277:141–148

    Article  PubMed  CAS  Google Scholar 

  132. Papi A, Tatenhorst L, Terwel D et al (2009) PPARgamma and RXRgamma ligands act synergistically as potent antineoplastic agents in vitro and in vivo glioma models. J Neurochem 109:1779–1790

    Article  PubMed  CAS  Google Scholar 

  133. Magenta G, Borenstein X, Rolando R et al (2008) Rosiglitazone inhibits metastasis development of a murine mammary tumor cell line LMM3. BMC Cancer 8:47

    Article  PubMed  CAS  Google Scholar 

  134. Aljada A, O’Connor L, Fu YY et al (2008) PPAR gamma ligands, rosiglitazone and pioglitazone, inhibit bFGF- and VEGF-mediated angiogenesis. Angiogenesis 11:361–367

    Article  PubMed  CAS  Google Scholar 

  135. Goetze S, Bungenstock A, Czupalla C et al (2002) Leptin induces endothelial cell migration through Akt, which is inhibited by PPARgamma-ligands. Hypertension 40:748–754

    Article  PubMed  CAS  Google Scholar 

  136. Shigeto T, Yokoyama Y, Xin B et al (2007) Peroxisome proliferator-activated receptor alpha and gamma ligands inhibit the growth of human ovarian cancer. Oncol Rep 18:833–840

    PubMed  CAS  Google Scholar 

  137. Dong YW, Wang XP, Wu K (2009) Suppression of pancreatic carcinoma growth by activating peroxisome proliferator-activated receptor gamma involves angiogenesis inhibition. World J Gastroenterol 15:441–448

    Article  PubMed  CAS  Google Scholar 

  138. McCarty MF, Barroso-Aranda J, Contreras F (2008) PPAR gamma agonists can be expected to potentiate the efficacy of metronomic chemotherapy through CD36 up-regulation. Med Hypotheses 70:419–423

    Article  PubMed  CAS  Google Scholar 

  139. Reichle A, Walpinski S, Vogelhuber M et al (2008) Targeted anti-inflammatroy and angiostatic therapy in pretreated patients with advanced hepatocellular carcinoma. J clin oncol, ASCO 26: abstract 15560

    Google Scholar 

  140. Reichle A, Vogt T, Coras B et al (2007) Targeted combined anti-inflammatory and angiostatic therapy in advanced melanoma: a randomized phase II trial. Melanoma Res 17:360–364

    Article  PubMed  CAS  Google Scholar 

  141. Bundscherer A, Hafner C (2009) New indications for established drugs able to modify tumour-host interactions. In: Baronzio G, Fiorentini G, Cogel C (ed) Cancer Microinvironment and therapeutic implications, 1st edn. Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hafner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Bundscherer, A., Hafner, C. (2010). Breathing New Life into Old Drugs: Indication Discovery by Systems Directed Therapy. In: Reichle, A. (eds) From Molecular to Modular Tumor Therapy. The Tumor Microenvironment, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9531-2_24

Download citation

Publish with us

Policies and ethics