Skip to main content

Secretome Proteomics, a Novel Tool for Biomarkers Discovery and for Guiding Biomodulatory Therapy Approaches

  • Chapter
  • First Online:
From Molecular to Modular Tumor Therapy

Part of the book series: The Tumor Microenvironment ((TTME,volume 3))

Abstract

Secretome analysis represents a novel technology for biomarker ­discovery based on proteome profiling of proteins secreted by both primary tumor cells and tumor associated cells. Tumor cells are able to establish a permissive and supportive environment for survival and cell growth and to facilitate invasion and metastasis by modulating the stromal host compartment. The onset of these characteristic events seems to precede tumor progression. Due to the leaky nature of newly formed blood vessels and the increased hydrostatic pressure within tumors, secreted proteins are most plausibly shed into the blood. Thus, proteins specifically secreted by these cells may serve as early disease biomarkers. Biomarker candidates identified by secretome proteomics combined with the application of appropriate bioinformatic tools can then be validated in human plasma/sera. Besides biomarker discovery secretome analysis will also shed light on mechanisms of tumor progression offering novel targets for therapeutic intervention. The tumor-stroma cell cooperativity is reversible and may thus be directly accessible to therapeutic intervention. In conclusion, secretome proteomics offers new insights into the pathophysiology of tumor progression, and allows the identification of novel biomarkers and of new drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFP:

Alpha-fetoprotein

CAF:

Cancer associated fibroblast

CEA:

Carcinoembryonic antigen

CPL/MUW – database:

Database of the Clinical Proteomics Laboratories at the Medical University of Vienna

DIGE:

Differential in-gel electrophoresis

Gpm:

Global proteome machine organisation

ICAT:

Isotope coded affinity tag

LMW:

Low-molecular-weight

MIAPE:

Minimum information about a proteomics experiment

PRIDE:

PRoteomics IDEntifications database

PSA:

Prostate specific antigen

ROC:

Receiver operating characteristic

SILAC:

Stable isotope labeling by amino acids in cell culture

SOP:

Standard operating procedure

SVM:

Support vector machines

TIF:

Tissue interstitial fluid

References

  1. Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL et al (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50.

    Article  PubMed  CAS  Google Scholar 

  2. Apweiler R, Aslanidis C, Deufel T et al (2009) Approaching clinical proteomics: current state and future fields of application in cellular proteomics. Cytometry A 75:816–832.

    PubMed  Google Scholar 

  3. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983.

    Article  PubMed  CAS  Google Scholar 

  4. Ahmed FE (2009) The role of capillary electrophoresis-mass spectrometry to proteome analysis and biomarker discovery. J Chromatogr B Analyt Technol Biomed Life Sci 877:1963–1981.

    Article  PubMed  CAS  Google Scholar 

  5. Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96.

    Article  PubMed  Google Scholar 

  6. Schamberger CJ, Gerner C, Cerni C (2004) bFGF rescues 423-cells from serum starvation-induced apoptosis downstream of activated caspase-3. FEBS Lett 573:19–25.

    Article  PubMed  CAS  Google Scholar 

  7. Culp WD, Neal R, Massey R et al (2006) Proteomic analysis of tumor establishment and growth in the B16-F10 mouse melanoma model. J Proteome Res 5:1332–1343.

    Article  PubMed  CAS  Google Scholar 

  8. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379.

    Article  PubMed  CAS  Google Scholar 

  9. Paulitschke V, Kunstfeld R, Mohr T et al (2009) Entering a new era of rational biomarker discovery for early detection of melanoma metastases: secretome analysis of associated stroma cells. J Proteome Res 8:2501–2510.

    Article  PubMed  CAS  Google Scholar 

  10. Ohsie SJ, Sarantopoulos GP, Cochran AJ (2008) Immunohistochemical characteristics of melanoma. J Cutan Pathol 35:433–444.

    Article  PubMed  Google Scholar 

  11. Sekulic A, Haluska P, Jr., Miller AJ et al (2008) Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin Proc 83:825–846.

    Article  PubMed  CAS  Google Scholar 

  12. Omenn GS, States DJ, Adamski M et al (2005) Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5:3226–3245.

    Article  PubMed  CAS  Google Scholar 

  13. Prakash A, Piening B, Whiteaker J, Zhang H et al (2007) Assessing bias in experiment design for large scale mass spectrometry-based quantitative proteomics. Mol Cell Proteomics 6:1741–1748.

    Article  PubMed  CAS  Google Scholar 

  14. Diamandis EP (2004) Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol Cell Proteomics 3:367–378.

    Article  PubMed  CAS  Google Scholar 

  15. Iau PT, Macmillan RD, Blamey RW (2001) Germ line mutations associated with breast cancer susceptibility. Eur J Cancer 37:300–321.

    Article  PubMed  CAS  Google Scholar 

  16. Welsh JB, Sapinoso LM, Kern SG et al (2003) Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc Natl Acad Sci U S A 100:3410–3415.

    Article  PubMed  CAS  Google Scholar 

  17. Tjalsma H, Bolhuis A, Jongbloed JD (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547.

    Article  PubMed  CAS  Google Scholar 

  18. Greenbaum D, Luscombe NM, Jansen R et al (2001) Interrelating different types of genomic data, from proteome to secretome: ‘oming in on function. Genome Res 11:1463–1468.

    Article  PubMed  CAS  Google Scholar 

  19. Volmer MW, Stuhler K, Zapatka M (2005) Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer. Proteomics 5:2587–2601.

    Article  PubMed  CAS  Google Scholar 

  20. Bundscherer A, Reichle A, Hafner C et al (2009) Targeting the tumor stroma with peroxisome proliferator activated receptor (PPAR) agonists. Anticancer Agents Med Chem 9:816–821.

    Article  PubMed  CAS  Google Scholar 

  21. Xue H, Lu B, Lai M (2008) The cancer secretome: a reservoir of biomarkers. J Transl Med 6:52.

    Article  PubMed  Google Scholar 

  22. Mbeunkui F, Fodstad O, Pannell LK (2006) Secretory protein enrichment and analysis: an optimized approach applied on cancer cell lines using 2D LC-MS/MS. J Proteome Res 5:899–906.

    Article  PubMed  CAS  Google Scholar 

  23. Zwickl H, Traxler E, Staettner S et al (2005) A novel technique to specifically analyze the secretome of cells and tissues. Electrophoresis 26:2779–2785.

    Article  PubMed  CAS  Google Scholar 

  24. Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678.

    Article  PubMed  CAS  Google Scholar 

  25. Xue H, Lu B, Zhang J, Wu M et al (2010) Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach. J Proteome Res 9:545–555.

    Article  PubMed  CAS  Google Scholar 

  26. Gundacker NC, Haudek VJ, Wimmer H et al (2009) Cytoplasmic proteome and secretome profiles of differently stimulated human dendritic cells. J Proteome Res 2009.

    Google Scholar 

  27. Wimmer H, Gundacker NC, Griss J et al (2009) Introducing the CPL/MUW proteome database: interpretation of human liver and liver cancer proteome profiles by referring to isolated primary cells. Electrophoresis 30:2076–2089.

    Article  PubMed  CAS  Google Scholar 

  28. Thadikkaran L, Siegenthaler MA, Crettaz D et al (2995) Recent advances in blood-related proteomics. Proteomics 5:3019–3034.

    Article  Google Scholar 

  29. Kislinger T, Emili A (2003) Going global: protein expression profiling using shotgun mass spectrometry. Curr Opin Mol Ther 5:285–293.

    PubMed  CAS  Google Scholar 

  30. Perkins DN, Pappin DJ, Creasy DM, Cottrell et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20:3551–3567.

    Google Scholar 

  31. Yates JR, 3rd, Eng JK, McCormack AL et al (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67:1426–1436.

    Article  PubMed  CAS  Google Scholar 

  32. Kapp EA, Schutz F, Connolly LM et al (2005) An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics 5:3475–3490.

    Article  PubMed  CAS  Google Scholar 

  33. Jones P, Cote RG, Martens L (2006) PRIDE: a public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Res 34:D659–663.

    Article  PubMed  CAS  Google Scholar 

  34. Craig R, Cortens JP, Beavis RC (2004) Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3:1234–1242.

    Article  PubMed  CAS  Google Scholar 

  35. Taylor CF, Paton NW, Lilley KS et al (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 2007, 25:887–893.

    Article  CAS  Google Scholar 

  36. Ahmed FE (2008) Application of MALDI/SELDI mass spectrometry to cancer biomarker discovery and validation. Curr Proteom 5:224–252.

    Article  CAS  Google Scholar 

  37. Wu CC, Hsu CW, Chen CD et al (2010) Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas. Mol Cell Proteomics 2010.

    Google Scholar 

  38. Nesvizhskii AI, Vitek O, Aebersold R (2007) Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods 4:787–797.

    Article  PubMed  CAS  Google Scholar 

  39. Malik R, Dulla K, Nigg EA, Korner R (2010) From proteome lists to biological impact- tools and strategies for the analysis of large MS data sets. Proteomics 2010.

    Google Scholar 

  40. Jimenez-Marin A, Collado-Romero M, Ramirez-Boo M et al (2009) Biological pathway analysis by ArrayUnlock and Ingenuity Pathway Analysis. BMC Proc 2009, 3 Suppl 4:S6.

    Article  Google Scholar 

  41. Griss J, Gerner C (2009) GPDE: a biological view on PRIDE. J Proteom Bioinform 2:167–174.

    Article  CAS  Google Scholar 

  42. Wu CC, Chen HC, Chen SJ et al (2008) Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics 8:316–332.

    Article  PubMed  CAS  Google Scholar 

  43. Xiao T, Ying W, Li L et al (2005) An approach to studying lung cancer-related proteins in human blood. Mol Cell Proteomics 4:1480–1486.

    Article  PubMed  CAS  Google Scholar 

  44. Dombkowski AA, Cukovic D, Novak RF (2006) Secretome analysis of microarray data reveals extracellular events associated with proliferative potential in a cell line model of breast disease. Cancer Lett 241:49–58.

    Article  PubMed  CAS  Google Scholar 

  45. Celis JE, Gromov P, Cabezon T et al (2004) Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: a novel resource for biomarker and therapeutic target discovery. Mol Cell Proteomics 3:327–344.

    Article  PubMed  CAS  Google Scholar 

  46. Huang CM, Ananthaswamy HN, Barnes S et al (2006) Mass spectrometric proteomics profiles of in vivo tumor secretomes: capillary ultrafiltration sampling of regressive tumor masses. Proteomics 2006, 6:6107–6116.

    Article  CAS  Google Scholar 

  47. Huber J, Kiefer FW, Zeyda M et al (2008) CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J Clin Endocrinol Metab 93:3215–3221.

    Article  PubMed  CAS  Google Scholar 

  48. Mohr T, Haudek VJ, Gundacker CN et al (2009) Proteome and secretome profiles of angiogenic and inflammatory activated human endothelial cells: contribution to a systematic biomarker discovery approach. Mol Cell Proteomics 2009:submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Paulitschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Paulitschke, V., Kunstfeld, R., Gerner, C. (2010). Secretome Proteomics, a Novel Tool for Biomarkers Discovery and for Guiding Biomodulatory Therapy Approaches. In: Reichle, A. (eds) From Molecular to Modular Tumor Therapy. The Tumor Microenvironment, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9531-2_21

Download citation

Publish with us

Policies and ethics