Skip to main content

The Impact of Inflammation Control and Active Cancer Palliation on Metabolic Pathways Determining Tumor Progression and Patient Survival

  • Chapter
  • First Online:
From Molecular to Modular Tumor Therapy

Part of the book series: The Tumor Microenvironment ((TTME,volume 3))

  • 871 Accesses

Abstract

Strong associations are assumed between inflammation, cancer initiation, and tumor progression. Weight loss and cachexia predispose for early death in cancer disease. Usually, such cachexia conditions are characterized by systemic inflammation, which is easily monitored by increased blood levels of C-reactive protein and an elevated erythrocyte sedimentation rate. Hypothetically, eicosanoids or, more specifically, prostaglandins could be common mediators in the promotion of cancer cachexia and the fatigue syndrome. Consequently, prostaglandins, particularly prostaglandin E2, have been reported to involve the development of anorexia, altered resting energy expenditure, tumor neoangiogenesis, elevated whole-body fat and cell metabolism, as well as blood and circulatory homeostasis in progressive cancer disease.

Thus, primary and secondary interventions with cyclooxygenase inhibitors (COX-1, COX-2) should significantly influence the appearance of overt malignancy and attenuate local tumor growth with improved survival in experimental and clinical cancer. Providing nutritional support, either by oral ingestion or parenteral nutrition, may help to prolong survival and increase wellbeing and quality of life in such patients. In our study, this treatment was combined with anti-inflammatory therapy to conceptually increase the effectiveness of supportive care.

Studies were supported in parts by grants from the Assar Gabrielsson Foundation (AB Volvo), the Gothenburg Medical Society, the Olle Engkvist Foundation, the Swedish Government (LUA-ALF), the Swedish Cancer Society (2014), and the Swedish Research Council (08712).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karlberg I, Edstrom S, Ekman L, Johansson S, Schersten T, Lundholm K. Metabolic host reaction in response to the proliferation of nonmalignant cells versus malignant cells in vivo. Cancer Res 1981;41(10):4154–4161.

    PubMed  CAS  Google Scholar 

  2. Kaidi A, Qualtrough D, Williams AC, Paraskeva C. Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res 2006;66(13):6683–6691.

    PubMed  CAS  Google Scholar 

  3. Beutler B, Cerami A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature 1986;320(6063):584–588.

    PubMed  CAS  Google Scholar 

  4. Beutler B, Cerami A. Cachectin: more than a tumor necrosis factor. N Engl J Med 1987;316(7):379–385.

    PubMed  CAS  Google Scholar 

  5. Jones MK, Wang H, Peskar BM, Levin E, Itani RM, Sarfeh IJ, Tarnawski AS. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nat Med 1999;5(12):1418–1423.

    PubMed  CAS  Google Scholar 

  6. Zhang X, Nie D, Chakrabarty S. Growth factors in tumor microenvironment. Front Biosci 2010;15:151–165.

    PubMed  CAS  Google Scholar 

  7. Weinberg RA. Mechanisms of malignant progression. Carcinogenesis 2008;29(6):1092–1095.

    PubMed  CAS  Google Scholar 

  8. Ribatti D, Mangialardi G, Vacca A. Stephen Paget and the ‘seed and soil’ theory of metastatic dissemination. Clin Exp Med 2006;6(4):145–149.

    PubMed  CAS  Google Scholar 

  9. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 2010(Feb 8).

    Google Scholar 

  10. Chatten C, Bathe OF. Immunoregulatory cells of the tumor microenvironment. Front Biosci 2010;15:291–308.

    PubMed  CAS  Google Scholar 

  11. Fouladiun M, Körner U, Bosaeus I, Daneryd P, Hyltander A, Lundholm K. Body composition and time course changes in regional distribution of fat and lean tissues in unselected cancer patients on palliative care. Correlations with food intake, metabolism, exercise capacity and hormones. Cancer 2005;103(10):2189–2198.

    PubMed  Google Scholar 

  12. Rojas A, Figueroa H, Morales E. Fueling inflammation at tumor microenvironment: the role of multiligand/rage axis. Carcinogenesis 2009;31(3):334–341.

    PubMed  Google Scholar 

  13. Hyltander A, Drott C, Korner U, Sandstrom R, Lundholm K. Elevated energy expenditure in cancer patients with solid tumours. Eur J Cancer 1991;27(1):9–15.

    PubMed  CAS  Google Scholar 

  14. Hyltander A, Korner U, Lundholm KG. Evaluation of mechanisms behind elevated energy expenditure in cancer patients with solid tumours. Eur J Clin Invest 1993;23(1):46–52.

    PubMed  CAS  Google Scholar 

  15. Lindmark L, Bennegard K, Eden E, Ekman L, Schersten T, Svaninger G, Lundholm K. Resting energy expenditure in malnourished patients with and without cancer. Gastroenterology 1984;87(2):402–408.

    PubMed  CAS  Google Scholar 

  16. Eden E, Edstrom S, Bennegard K, Lindmark L, Lundholm K. Glycerol dynamics in weight-losing cancer patients. Surgery 1985;97(2):176–184.

    PubMed  CAS  Google Scholar 

  17. Bennegard K, Lindmark L, Eden E, Svaninger G, Lundholm K. Flux of amino acids across the leg in weight-losing cancer patients. Cancer Res 1984;44(1):386–393.

    PubMed  CAS  Google Scholar 

  18. Drott C, Waldenstrom A, Lundholm K. Cardiac sensitivity and responsiveness to beta-adrenergic stimulation in experimental cancer and undernutrition. J Mol Cell Cardiol 1987;19(7):675–683.

    PubMed  CAS  Google Scholar 

  19. Drott C, Persson H, Lundholm K. Cardiovascular and metabolic response to adrenaline infusion in weight- losing patients with and without cancer. Clin Physiol 1989;9(5):427–439.

    PubMed  CAS  Google Scholar 

  20. Drott C, Lundholm K. Cardiac effects of caloric restriction-mechanisms and potential hazards. Int J Obes Relat Metab Disord 1992;16(7):481–486.

    PubMed  CAS  Google Scholar 

  21. Ransnas L, Drott C, Lundholm K, Hjalmarson A, Jacobsson B. Effects of malnutrition on rat myocardial beta-adrenergic and muscarinic receptors. Circ Res 1989;64(5):949–956.

    PubMed  CAS  Google Scholar 

  22. Lundholm K, Daneryd P, Korner U, Hyltander A, Bosaeus I. Evidence that long-term COX-treatment improves energy homeostasis and body composition in cancer patients with progressive cachexia. Int J Oncol 2004;24(3):505–512.

    PubMed  CAS  Google Scholar 

  23. Lundholm K, Gelin J, Hyltander A, Lonnroth C, Sandstrom R, Svaninger G, Korner U, Gulich M, Karrefors I, Norli B, et al. Anti-inflammatory treatment may prolong survival in undernourished patients with metastatic solid tumors. Cancer Res 1994;54(21):5602–5606.

    PubMed  CAS  Google Scholar 

  24. Sandstrom R, Gelin J, Lundholm K. The effect of indomethacin on food and water intake, motor activity and survival in tumour-bearing rats. Eur J Cancer 1990;26(7):811–814.

    PubMed  CAS  Google Scholar 

  25. Calder PC. Polyunsaturated fatty acids, inflammation, and immunity. Lipids 2001;36(9):1007–1024.

    PubMed  CAS  Google Scholar 

  26. Murakami M, Kudo I. Phospholipase A2. J Biochem 2002;131(3):285–292.

    PubMed  CAS  Google Scholar 

  27. Murakami M, Nakatani Y, Atsumi G, Inoue K, Kudo I. Regulatory functions of phospholipase A2. Crit Rev Immunol 1997;17(3–4):225–283.

    PubMed  CAS  Google Scholar 

  28. Hamberg M, Svensson J, Samuelsson B. Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins. Proc Natl Acad Sci USA 1974;71(10):3824–3828.

    PubMed  CAS  Google Scholar 

  29. Smith WL, Meade EA, DeWitt DL. Pharmacology of prostaglandin endoperoxide synthase isozymes-1 and -2. Ann N Y Acad Sci 1994;714:136–142.

    PubMed  CAS  Google Scholar 

  30. Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 1996;271(52):33157–33160.

    PubMed  CAS  Google Scholar 

  31. Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, Simmons DL. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 2002;99(21):13926–13931.

    PubMed  CAS  Google Scholar 

  32. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 1998;38:97–120.

    PubMed  CAS  Google Scholar 

  33. Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev 1999;79(4):1193–1226.

    PubMed  CAS  Google Scholar 

  34. Kanai N, Lu R, Satriano JA, Bao Y, Wolkoff AW, Schuster VL. Identification and characterization of a prostaglandin transporter. Science 1995;268(5212):866–899.

    PubMed  CAS  Google Scholar 

  35. Tai HH, Ensor CM, Tong M, Zhou H, Yan F. Prostaglandin catabolizing enzymes. Prostaglandins Other Lipid Mediat 2002;68–69:483–493.

    PubMed  Google Scholar 

  36. Breyer RM, Bagdassarian CK, Myers SA, Breyer MD. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 2001;41:661–690.

    PubMed  CAS  Google Scholar 

  37. Dey I, Lejeune M, Chadee K. Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. Br J Pharmacol 2006;149(6):611–623.

    PubMed  CAS  Google Scholar 

  38. Coleman RA, Smith WL, Narumiya S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 1994;46(2):205–229.

    PubMed  CAS  Google Scholar 

  39. JL, Shih JY, Yen ML, Jeng YM, Chang CC, Hsieh CY, Wei LH, Yang PC, Kuo ML. Cyclooxygenase-2 induces EP1- and HER-2/Neu-dependent vascular endothelial growth factor-C up-regulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Res 2004;64(2):554–564.

    PubMed  CAS  Google Scholar 

  40. Han C, Wu T. Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt. J Biol Chem 2005;280(25):24053–24063.

    PubMed  CAS  Google Scholar 

  41. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 2005;310(5753):1504–1510.

    PubMed  CAS  Google Scholar 

  42. Takeuchi K, Ukawa H, Kato S, Furukawa O, Araki H, Sugimoto Y, Ichikawa A, Ushikubi F, Narumiya S. Impaired duodenal bicarbonate secretion and mucosal integrity in mice lacking prostaglandin E-receptor subtype EP(3). Gastroenterology 1999;117(5):1128–1135.

    PubMed  CAS  Google Scholar 

  43. Amano H, Hayashi I, Endo H, Kitasato H, Yamashina S, Maruyama T, Kobayashi M, Satoh K, Narita M, Sugimoto Y, et al. Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. J Exp Med 2003;197(2):221–232.

    PubMed  CAS  Google Scholar 

  44. Yano T, Zissel G, Muller-Qernheim J, Jae Shin S, Satoh H, Ichikawa T. Prostaglandin E2 reinforces the activation of Ras signal pathway in lung adenocarcinoma cells via EP3. FEBS Lett 2002;518(1–3):154–158.

    PubMed  CAS  Google Scholar 

  45. Ushikubi F, Segi E, Sugimoto Y, Murata T, Matsuoka T, Kobayashi T, Hizaki H, Tuboi K, Katsuyama M, Ichikawa A, et al. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 1998;395(6699):281–284.

    PubMed  CAS  Google Scholar 

  46. Pierce KL, Regan JW. Prostanoid receptor heterogeneity through alternative mRNA splicing. Life Sci 1998;62(17–18):1479–1483.

    PubMed  CAS  Google Scholar 

  47. Namba T, Sugimoto Y, Negishi M, Irie A, Ushikubi F, Kakizuka A, Ito S, Ichikawa A, Narumiya S. Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature 1993;365(6442):166–170.

    PubMed  CAS  Google Scholar 

  48. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001;357(9255):539–545.

    PubMed  CAS  Google Scholar 

  49. Wu Y, Zhou BP. Inflammation: a driving force speeds cancer metastasis. Cell Cycle 2009;8(20):3267–3273.

    PubMed  CAS  Google Scholar 

  50. Farrow B, Evers BM. Inflammation and the development of pancreatic cancer. Surg Oncol 2002;10(4):153–169.

    PubMed  Google Scholar 

  51. Ben-Baruch A. Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 2006;16(1):38–52.

    PubMed  CAS  Google Scholar 

  52. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420(6917):860–867.

    PubMed  CAS  Google Scholar 

  53. Marx J. Cancer research. Inflammation and cancer: the link grows stronger. Science 2004;306(5698):966–968.

    PubMed  CAS  Google Scholar 

  54. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 2006;25(3):315–322.

    PubMed  Google Scholar 

  55. Alphonso A, Alahari SK. Stromal cells and integrins: conforming to the needs of the tumor microenvironment. Neoplasia 2009;11(12):1264–1271.

    PubMed  CAS  Google Scholar 

  56. Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci 2010;15:166–179.

    PubMed  CAS  Google Scholar 

  57. Liou JY, Ellent DP, Lee S, Goldsby J, Ko BS, Matijevic N, Huang JC, Wu KK. Cyclooxygenase-2-derived prostaglandin e2 protects mouse embryonic stem cells from apoptosis. Stem Cells 2007;25(5):1096–1103.

    PubMed  CAS  Google Scholar 

  58. Axelsson H, Lönnroth C, Andersson M, Wang W, Lundholm K. Global tumor RNA expression in early establishment of experimental tumor growth and related angiogenesis following COX-inhibition evaluated by microarray analysis. Cancer Informatics 2007;2:199–213.

    Google Scholar 

  59. Gelin J, Andersson C, Lundholm K. Effects of indomethacin, cytokines, and cyclosporin A on tumor growth and the subsequent development of cancer cachexia. Cancer Res 1991;51(3):880–885.

    PubMed  CAS  Google Scholar 

  60. Yamauchi T, Watanabe M, Hasegawa H, Nishibori H, Ishii Y, Tatematsu H, Yamamoto K, Kubota T, Kitajima M. The potential for a selective cyclooxygenase-2 inhibitor in the prevention of liver metastasis in human colorectal cancer. Anticancer Res 2003;23(1A):245–249.

    PubMed  CAS  Google Scholar 

  61. Yao M, Kargman S, Lam EC, Kelly CR, Zheng Y, Luk P, Kwong E, Evans JF, Wolfe MM. Inhibition of cyclooxygenase-2 by rofecoxib attenuates the growth and metastatic potential of colorectal carcinoma in mice. Cancer Res 2003;63(3):586–592.

    PubMed  CAS  Google Scholar 

  62. Sheng H, Shao J, Washington MK, DuBois RN. Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. J Biol Chem 2001;276(21):18075–18081.

    PubMed  CAS  Google Scholar 

  63. Subbaramaiah K, Dannenberg AJ. Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci 2003;24(2):96–102.

    PubMed  CAS  Google Scholar 

  64. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 2008;13(6):472–482.

    PubMed  CAS  Google Scholar 

  65. Bucinskaite V, Kurosawa M, Miyasaka K, Funakoshi A, Lundeberg T. Interleukin-1beta sensitizes the response of the gastric vagal afferent to cholecystokinin in rat. Neurosci Lett 1997;229(1):33–36.

    PubMed  CAS  Google Scholar 

  66. Kurosawa M, Uvnas-Moberg K, Miyasaka K, Lundeberg T. Interleukin-1 increases activity of the gastric vagal afferent nerve partly via stimulation of type A CCK receptor in anesthetized rats. J Auton Nerv Syst 1997;62(1–2):72–78.

    PubMed  CAS  Google Scholar 

  67. Ek M, Kurosawa M, Lundeberg T, Ericsson A. Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. J Neurosci 1998;18(22):9471–9479.

    PubMed  CAS  Google Scholar 

  68. Ericsson A, Liu C, Hart RP, Sawchenko PE. Type 1 interleukin-1 receptor in the rat brain: distribution, regulation, and relationship to sites of IL-1-induced cellular activation. J Comp Neurol 1995;361(4):681–698.

    PubMed  CAS  Google Scholar 

  69. Goehler LE, Relton JK, Dripps D, Kiechle R, Tartaglia N, Maier SF, Watkins LR. Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res Bull 1997;43(3):357–364.

    PubMed  CAS  Google Scholar 

  70. Turrin NP, Gayle D, Ilyin SE, Flynn MC, Langhans W, Schwartz GJ, Plata-Salaman CR. Pro-inflammatory and anti-inflammatory cytokine mRNA induction in the periphery and brain following intraperitoneal administration of bacterial lipopolysaccharide. Brain Res Bull 2001;54(4):443–453.

    PubMed  CAS  Google Scholar 

  71. Sergeyev V, Broberger C, Hokfelt T. Effect of LPS administration on the expression of POMC, NPY, galanin, CART and MCH mRNAs in the rat hypothalamus. Brain Res Mol Brain Res 2001;90(2):93–100.

    PubMed  CAS  Google Scholar 

  72. Smedh U, Moran TH. Peptides that regulate food intake: separable mechanisms for dorsal hindbrain CART peptide to inhibit gastric emptying and food intake. Am J Physiol Regul Integr Comp Physiol 2003;284(6):R1418–1426.

    PubMed  CAS  Google Scholar 

  73. Tritos NA, Maratos-Flier E. Two important systems in energy homeostasis: melanocortins and melanin-concentrating hormone. Neuropeptides 1999;33(5):339–349.

    PubMed  CAS  Google Scholar 

  74. Wirth MM, Olszewski PK, Yu C, Levine AS, Giraudo SQ. Paraventricular hypothalamic alpha-melanocyte-stimulating hormone and MTII reduce feeding without causing aversive effects. Peptides 2001;22(1):129–134.

    PubMed  CAS  Google Scholar 

  75. Aja S, Sahandy S, Ladenheim EE, Schwartz GJ, Moran TH. Intracerebroventricular CART peptide reduces food intake and alters motor behavior at a hindbrain site. Am J Physiol Regul Integr Comp Physiol 2001;281(6):R1862–1867.

    PubMed  CAS  Google Scholar 

  76. Markison S, Foster AC, Chen C, Brookhart GB, Hesse A, Hoare SR, Fleck BA, Brown BT, Marks DL. The regulation of feeding and metabolic rate and the prevention of murine cancer cachexia with a small-molecule melanocortin-4 receptor antagonist. Endocrinology 2005;146(6):2766–2773.

    PubMed  CAS  Google Scholar 

  77. Whitaker KW, Reyes TM. Central blockade of melanocortin receptors attenuates the metabolic and locomotor responses to peripheral interleukin-1beta administration. Neuropharmacology 2008;54(3):509–520.

    PubMed  CAS  Google Scholar 

  78. Weyermann P, Dallmann R, Magyar J, Anklin C, Hufschmid M, Dubach-Powell J, Courdier-Fruh I, Hennebohle M, Nordhoff S, Mondadori C. Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PLoS One 2009;4(3):e4774.

    PubMed  Google Scholar 

  79. Black WC, Welch HG. Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med 1993;328(17):1237–1243.

    PubMed  CAS  Google Scholar 

  80. Folkman J, Kalluri R. Cancer without disease. Nature 2004;427(6977):787.

    PubMed  CAS  Google Scholar 

  81. Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, Gomis RR, Manova-Todorova K, Massague J. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 2007;446(7137):765–770.

    PubMed  CAS  Google Scholar 

  82. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003;3(6):401–410.

    PubMed  CAS  Google Scholar 

  83. Salcedo R, Zhang X, Young HA, Michael N, Wasserman K, Ma WH, Martins-Green M, Murphy WJ, Oppenheim JJ. Angiogenic effects of prostaglandin E2 are mediated by up-regulation of CXCR4 on human microvascular endothelial cells. Blood 2003;102(6):1966–1977.

    PubMed  CAS  Google Scholar 

  84. Fenwick SW, Toogood GJ, Lodge JP, Hull MA. The effect of the selective cyclooxygenase-2 inhibitor rofecoxib on human colorectal cancer liver metastases. Gastroenterology 2003;125(3):716–129.

    PubMed  CAS  Google Scholar 

  85. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285(21):1182–1186.

    PubMed  CAS  Google Scholar 

  86. Williams CS, Tsujii M, Reese J, Dey SK, DuBois RN. Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest 2000;105(11):1589–1594.

    PubMed  CAS  Google Scholar 

  87. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF, Taketo MM. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 1996;87(5):803–809.

    PubMed  CAS  Google Scholar 

  88. Joo YE, Rew JS, Seo YH, Choi SK, Kim YJ, Park CS, Kim SJ. Cyclooxygenase-2 overexpression correlates with vascular endothelial growth factor expression and tumor angiogenesis in gastric cancer. J Clin Gastroenterol 2003;37(1):28–33.

    PubMed  CAS  Google Scholar 

  89. Hernandez GL, Volpert OV, Iniguez MA, Lorenzo E, Martinez-Martinez S, Grau R, Fresno M, Redondo JM. Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J Exp Med 2001;193(5):607–620.

    PubMed  CAS  Google Scholar 

  90. Axelsson H, Lönnroth C, Wang W, Svanberg E, Lundholm K. Cyclooxygenase inhibition in early onset of tumor growth and related angiogenesis evaluated in EP1 and EP3 knockout tumor-bearing mice. Angiogenesis 2005;8(4):339–348.

    PubMed  CAS  Google Scholar 

  91. Peterson HI. Tumor angiogenesis inhibition by prostaglandin synthetase inhibitors. Anticancer Res 1986;6(2):251–253.

    PubMed  CAS  Google Scholar 

  92. Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells (published erratum appears in Cell 1998 Jul 24;94(2):following 271). Cell 1998;93(5):705–716.

    PubMed  CAS  Google Scholar 

  93. Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM, Edwards DA, Flickinger AG, Moore RJ, Seibert K. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 2000;60(5):1306–1311.

    PubMed  CAS  Google Scholar 

  94. Skopinska-Rozewska E, Piazza GA, Sommer E, Pamukcu R, Barcz E, Filewska M, Kupis W, Caban R, Rudzinski P, Bogdan J, et al. Inhibition of angiogenesis by sulindac and its sulfone metabolite (FGN- 1): a potential mechanism for their antineoplastic properties. Int J Tissue React 1998;20(3):85–89.

    PubMed  CAS  Google Scholar 

  95. Sawaoka H, Tsuji S, Tsujii M, Gunawan ES, Sasaki Y, Kawano S, Hori M. Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Lab Invest 1999;79(12):1469–1477.

    PubMed  CAS  Google Scholar 

  96. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 2009;30(3):377–386.

    PubMed  CAS  Google Scholar 

  97. Wang W, Andersson M, Lönnroth C, Svanberg E, Lundholm K. Anorexia and cachexia in prostaglandin EP1 and EP3 subtype receptor knockout mice bearing a tumor with high intrinsic PGE2 production and prostaglandin related cachexia. J Exp Clin Cancer Res 2005;24(1):99–107.

    PubMed  CAS  Google Scholar 

  98. Gustafsson A, Hansson E, Kressner U, Nordgren S, Andersson M, Wang W, Lonnroth C, Lundholm K. EP(1–4) subtype, COX and PPARgamma receptor expression in colorectal cancer in prediction of disease-specific mortality. Int J Cancer 2007;121(2):232–240.

    PubMed  CAS  Google Scholar 

  99. Cahlin C, Lönnroth C, Arvidsson A, Nordgren S, Lundholm K. Growth associated proteins in tumor cells and stroma related to disease progression of colon cancer accounting for tumor tissue PGE2 content. Int J Oncol 2008;32:909–918.

    PubMed  CAS  Google Scholar 

  100. Cahlin C, Gelin J, Andersson M, Lönnroth C, Lundholm K. The effects of non-selective, preferential-selective and selective COX-inhibitors on the growth of experimental and human tumors in mice related to prostanoid receptors. Int J Oncol 2005;27:913–923.

    PubMed  CAS  Google Scholar 

  101. Lönnroth C, Andersson M, Arvidsson A, Nordgren S, Brevinge H, Lagerstedt K, Lundholm K. Preoperative treatment with a non-steroidal antiinflammaatory drug (NSAID) increases tumor tissue infiltration of seemingly activated immune cells in colorectal cancer Cancer Immun 2008;8:5.

    PubMed  Google Scholar 

  102. Yoshimatsu K, Golijanin D, Paty PB, Soslow RA, Jakobsson PJ, DeLellis RA, Subbaramaiah K, Dannenberg AJ. Inducible microsomal prostaglandin E synthase is overexpressed in colorectal adenomas and cancer. Clin Cancer Res 2001;7(12):3971–3976.

    PubMed  CAS  Google Scholar 

  103. Gustafsson A, Andersson M, Lagerstedt K, Lönnroth C, Nordgren S, Lundholm K. Receptor and enzyme expression for prostanoid metabolism in colorectal cancer as related to tumor tissue PGE2. Int J Oncol 2010;36:469–478.

    PubMed  CAS  Google Scholar 

  104. Ferrandez A, Prescott S, Burt RW. COX-2 and colorectal cancer. Curr Pharm Des 2003;9(27):2229–2251.

    PubMed  CAS  Google Scholar 

  105. Shin VY, Wu WK, Ye YN, So WH, Koo MW, Liu ES, Luo JC, Cho CH. Nicotine promotes gastric tumor growth and neovascularization by activating extracellular signal-regulated kinase and cyclooxygenase-2. Carcinogenesis 2004;25(12):2487–2495.

    PubMed  CAS  Google Scholar 

  106. Sandler RS, Halabi S, Baron JA, Budinger S, Paskett E, Keresztes R, Petrelli N, Pipas JM, Karp DD, Loprinzi CL, et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med 2003;348(10):883–890.

    PubMed  CAS  Google Scholar 

  107. Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, McKeown-Eyssen G, Summers RW, Rothstein R, Burke CA, et al. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med 2003;348(10):891–899.

    PubMed  CAS  Google Scholar 

  108. Asano TK, McLeod RS. Nonsteroidal anti-inflammatory drugs and aspirin for the prevention of colorectal adenomas and cancer: a systematic review. Dis Colon Rectum 2004;47(5):665–673.

    PubMed  CAS  Google Scholar 

  109. Chan AT, Giovannucci EL, Schernhammer ES, Colditz GA, Hunter DJ, Willett WC, Fuchs CS. A prospective study of aspirin use and the risk for colorectal adenoma. Ann Intern Med 2004;140(3):157–166.

    PubMed  CAS  Google Scholar 

  110. Chan AT, Ogino S, Fuchs CS. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med 2007;356(21):2131–2142.

    PubMed  CAS  Google Scholar 

  111. Bosman FT. Prognostic value of pathological characteristics of colorectal cancer. Eur J Cancer 1995;31A(7–8):1216–1221.

    PubMed  CAS  Google Scholar 

  112. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 2004;116(4):527–540.

    PubMed  CAS  Google Scholar 

  113. Leahy DT, Mulcahy HE, O’Donoghue DP, Parfrey NA. bcl-2 protein expression is associated with better prognosis in colorectal cancer. Histopathology 1999;35(4):360–367.

    PubMed  CAS  Google Scholar 

  114. Lönnroth C, Körner U, Larsson B, Henriksson BA, Lundholm K. Survival and erythropoietin receptor protein in tumors from patients randomly treated with rhEPO in palliative care. Med Oncol 2008;25:22–29.

    PubMed  Google Scholar 

  115. Ogino T, Shigyo H, Ishii H, Katayama A, Miyokawa N, Harabuchi Y, Ferrone S. HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res 2006;66(18):9281–9289.

    PubMed  CAS  Google Scholar 

  116. Thun MJ, Namboodiri MM, Heath CW, Jr. Aspirin use and reduced risk of fatal colon cancer. N Engl J Med 1991;325(23):1593–1596.

    PubMed  CAS  Google Scholar 

  117. Kune GA, Kune S, Watson LF. Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer Res 1988;48(15):4399–4404.

    PubMed  CAS  Google Scholar 

  118. Yang VW, Shields JM, Hamilton SR, Spannhake EW, Hubbard WC, Hylind LM, Robinson CR, Giardiello FM. Size-dependent increase in prostanoid levels in adenomas of patients with familial adenomatous polyposis. Cancer Res 1998;58(8):1750–1753.

    PubMed  CAS  Google Scholar 

  119. Rigas B, Goldman IS, Levine L. Altered eicosanoid levels in human colon cancer. J Lab Clin Med 1993;122(5):518–523.

    PubMed  CAS  Google Scholar 

  120. Pinto S, Gori L, Gallo O, Boccuzzi S, Paniccia R, Abbate R. Increased thromboxane A2 production at primary tumor site in metastasizing squamous cell carcinoma of the larynx. Prostaglandins Leukot Essent Fatty Acids 1993;49(1):527–530.

    PubMed  CAS  Google Scholar 

  121. Fulton AM, Ma X, Kundu N. Targeting prostaglandin E EP receptors to inhibit metastasis. Cancer Res 2006;66(20):9794–9797.

    PubMed  CAS  Google Scholar 

  122. Hull MA, Ko SC, Hawcroft G. Prostaglandin EP receptors: targets for treatment and prevention of colorectal cancer? Mol Cancer Ther 2004;3(8):1031–1039.

    PubMed  CAS  Google Scholar 

  123. Park BH, Breyer B, He TC. Peroxisome proliferator-activated receptors: roles in tumorigenesis and chemoprevention in human cancer. Curr Opin Oncol 2001;13(1):78–83.

    PubMed  CAS  Google Scholar 

  124. Sonoshita M, Takaku K, Sasaki N, Sugimoto Y, Ushikubi F, Narumiya S, Oshima M, Taketo MM. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nat Med 2001;7(9):1048–1051.

    PubMed  CAS  Google Scholar 

  125. Kawamori T, Uchiya N, Kitamura T, Ohuchida S, Yamamoto H, Maruyama T, Sugimura T, Wakabayashi K. Evaluation of a selective prostaglandin E receptor EP1 antagonist for potential properties in colon carcinogenesis. Anticancer Res 2001;21(6A):3865–3869.

    PubMed  CAS  Google Scholar 

  126. Kawamori T, Wakabayashi K. COX-2 and prostanoid receptors: good targets for chemoprevention. J Environ Pathol Toxicol Oncol 2002;21(2):149–153.

    PubMed  CAS  Google Scholar 

  127. Mutoh M, Watanabe K, Kitamura T, Shoji Y, Takahashi M, Kawamori T, Tani K, Kobayashi M, Maruyama T, Kobayashi K, et al. Involvement of prostaglandin E receptor subtype EP(4) in colon carcinogenesis. Cancer Res 2002;62(1):28–32.

    PubMed  CAS  Google Scholar 

  128. Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S, Yamamoto H, Maruyama T, Kondo K, Ushikubi F, Narumiya S, et al. Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res 1999;59(20):5093–5096.

    PubMed  CAS  Google Scholar 

  129. Takafuji V, Lublin D, Lynch K, Roche JK. Mucosal prostanoid receptors and synthesis in familial adenomatous polyposis. Histochem Cell Biol 2001;116(2):171–181.

    PubMed  CAS  Google Scholar 

  130. Cao Y, Prescott SM. Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol 2002;190(3):279–286.

    PubMed  CAS  Google Scholar 

  131. Thun MJ, Namboodiri MM, Calle EE, Flanders WD, Heath CW, Jr. Aspirin use and risk of fatal cancer. Cancer Res 1993;53(6):1322–1327.

    PubMed  CAS  Google Scholar 

  132. Lönnroth C, Andersson M, Lundholm K. Indomethacin and telomerase activity in tumor growth retardation. Int J Oncology 2001;18:929–937.

    Google Scholar 

  133. Hawcroft G, Gardner SH, Hull MA. Activation of peroxisome proliferator-activated receptor gamma does not explain the antiproliferative activity of the nonsteroidal anti-inflammatory drug indomethacin on human colorectal cancer cells. J Pharmacol Exp Ther 2003;305(2):632–637.

    PubMed  CAS  Google Scholar 

  134. Tanaka T, Kohno H, Yoshitani S, Takashima S, Okumura A, Murakami A, Hosokawa M. Ligands for peroxisome proliferator-activated receptors alpha and gamma inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Cancer Res 2001;61(6):2424–2428.

    PubMed  CAS  Google Scholar 

  135. Sporn MB, Suh N, Mangelsdorf DJ. Prospects for prevention and treatment of cancer with selective PPARgamma modulators (SPARMs). Trends Mol Med 2001;7(9):395–400.

    PubMed  CAS  Google Scholar 

  136. Muller R. Crosstalk of oncogenic and prostanoid signaling pathways. J Cancer Res Clin Oncol 2004;130(8):429–444.

    PubMed  Google Scholar 

  137. Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, Holden SA, Chen LB, Singer S, Fletcher C, et al. Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 1998;4(9):1046–1052.

    PubMed  CAS  Google Scholar 

  138. Chen YX, Zhong XY, Qin YF, Bing W, He LZ. 15d-PGJ2 inhibits cell growth and induces apoptosis of MCG-803 human gastric cancer cell line. World J Gastroenterol 2003;9(10):2149–2153.

    PubMed  CAS  Google Scholar 

  139. Panigrahy D, Singer S, Shen LQ, Butterfield CE, Freedman DA, Chen EJ, Moses MA, Kilroy S, Duensing S, Fletcher C, et al. PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest 2002;110(7):923–932.

    PubMed  CAS  Google Scholar 

  140. Xin X, Yang S, Kowalski J, Gerritsen ME. Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 1999;274(13):9116–9121.

    PubMed  CAS  Google Scholar 

  141. Sarraf P, Mueller E, Smith WM, Wright HM, Kum JB, Aaltonen LA, de la Chapelle A, Spiegelman BM, Eng C. Loss-of-function mutations in PPAR gamma associated with human colon cancer. Mol Cell 1999;3(6):799–804.

    PubMed  CAS  Google Scholar 

  142. Ikezoe T, Miller CW, Kawano S, Heaney A, Williamson EA, Hisatake J, Green E, Hofmann W, Taguchi H, Koeffler HP. Mutational analysis of the peroxisome proliferator-activated receptor gamma gene in human malignancies. Cancer Res 2001;61(13):5307–5310.

    PubMed  CAS  Google Scholar 

  143. Chen GG, Lee JF, Wang SH, Chan UP, Ip PC, Lau WY. Apoptosis induced by activation of peroxisome-proliferator activated receptor-gamma is associated with Bcl-2 and NF-kappaB in human colon cancer. Life Sci 2002;70(22):2631–2646.

    PubMed  CAS  Google Scholar 

  144. Girnun GD, Smith WM, Drori S, Sarraf P, Mueller E, Eng C, Nambiar P, Rosenberg DW, Bronson RT, Edelmann W, et al. APC-dependent suppression of colon carcinogenesis by PPARgamma. Proc Natl Acad Sci USA 2002;99(21):13771–13776.

    PubMed  CAS  Google Scholar 

  145. Chen LC, Hao CY, Chiu YS, Wong P, Melnick JS, Brotman M, Moretto J, Mendes F, Smith AP, Bennington JL, et al. Alteration of gene expression in normal-appearing colon mucosa of APC(min) mice and human cancer patients. Cancer Res 2004;64(10):3694–3700.

    PubMed  CAS  Google Scholar 

  146. Wise H. Multiple signalling options for prostacyclin. Acta Pharmacol Sin 2003;24(7):625–630.

    PubMed  CAS  Google Scholar 

  147. Cutler NS, Graves-Deal R, LaFleur BJ, Gao Z, Boman BM, Whitehead RH, Terry E, Morrow JD, Coffey RJ. Stromal production of prostacyclin confers an antiapoptotic effect to colonic epithelial cells. Cancer Res 2003;63(8):1748–1751.

    PubMed  CAS  Google Scholar 

  148. Hirai H, Tanaka K, Takano S, Ichimasa M, Nakamura M, Nagata K. Cutting edge: agonistic effect of indomethacin on a prostaglandin D2 receptor, CRTH2. J Immunol 2002;168(3):981–985.

    PubMed  CAS  Google Scholar 

  149. Park JM, Kanaoka Y, Eguchi N, Aritake K, Grujic S, Materi AM, Buslon VS, Tippin BL, Kwong AM, Salido E, et al. Hematopoietic prostaglandin D synthase suppresses intestinal adenomas in ApcMin/+ mice. Cancer Res 2007;67(3):881–889.

    PubMed  CAS  Google Scholar 

  150. Gosset P, Bureau F, Angeli V, Pichavant M, Faveeuw C, Tonnel AB, Trottein F. Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequence on the polarization of naive Th cells. J Immunol 2003;170(10):4943–4952.

    PubMed  CAS  Google Scholar 

  151. Yoshimura-Uchiyama C, Iikura M, Yamaguchi M, Nagase H, Ishii A, Matsushima K, Yamamoto K, Shichijo M, Bacon KB, Hirai K. Differential modulation of human basophil functions through prostaglandin D2 receptors DP and chemoattractant receptor-homologous molecule expressed on Th2 cells/DP2. Clin Exp Allergy 2004;34(8):1283–1290.

    PubMed  CAS  Google Scholar 

  152. Yoshida T, Ohki S, Kanazawa M, Mizunuma H, Kikuchi Y, Satoh H, Andoh Y, Tsuchiya A, Abe R. Inhibitory effects of prostaglandin D2 against the proliferation of human colon cancer cell lines and hepatic metastasis from colorectal cancer. Surg Today 1998;28(7):740–745.

    PubMed  CAS  Google Scholar 

  153. Glebov OK, Rodriguez LM, Lynch P, Patterson S, Lynch H, Nakahara K, Jenkins J, Cliatt J, Humbyrd CJ, Denobile J, et al. Celecoxib treatment alters the gene expression profile of normal colonic mucosa. Cancer Epidemiol Biomarkers Prev 2006;15(7):1382–1391.

    PubMed  CAS  Google Scholar 

  154. Lönnroth C, Svaninger G, Gelin J, Cahlin C, Iresjö B-M, Cvetkovska E, Edström S, Andersson M, Svanberg E, Lundholm K. Effects related to indomethacin prolonged survival and decreased tumor growth in a mouse tumor model with cytokine dependent cancer cachexia. Int J Oncol 1995;7:1405–1413.

    PubMed  Google Scholar 

  155. Auman JT, Church R, Lee SY, Watson MA, Fleshman JW, McLeod HL. Celecoxib pre-treatment in human colorectal adenocarcinoma patients is associated with gene expression alterations suggestive of diminished cellular proliferation. Eur J Cancer 2008;44(12):1754–1760.

    PubMed  CAS  Google Scholar 

  156. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP. Prostaglandins as modulators of immunity. Trends Immunol 2002;23(3):144–150.

    PubMed  CAS  Google Scholar 

  157. Shreedhar V, Giese T, Sung VW, Ullrich SE. A cytokine cascade including prostaglandin E2, IL-4, and IL-10 is responsible for UV-induced systemic immune suppression. J Immunol 1998;160(8):3783–3789.

    PubMed  CAS  Google Scholar 

  158. Huang M, Stolina M, Sharma S, Mao JT, Zhu L, Miller PW, Wollman J, Herschman H, Dubinett SM. Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res 1998;58(6):1208–12016.

    PubMed  CAS  Google Scholar 

  159. Della Bella S, Molteni M, Compasso S, Zulian C, Vanoli M, Scorza R. Differential effects of cyclo-oxygenase pathway metabolites on cytokine production by T lymphocytes. Prostaglandins Leukot Essent Fatty Acids 1997;56(3):177–184.

    PubMed  CAS  Google Scholar 

  160. Myung SJ, Rerko RM, Yan M, Platzer P, Guda K, Dotson A, Lawrence E, Dannenberg AJ, Lovgren AK, Luo G, et al. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc Natl Acad Sci USA 2006;103(32):12098–12102.

    PubMed  CAS  Google Scholar 

  161. Markewitz A, Faist E, Lang S, Endres S, Fuchs D, Reichart B. Successful restoration of cell-mediated immune response after cardiopulmonary bypass by immunomodulation. J Thorac Cardiovasc Surg 1993;105(1):15–24.

    PubMed  CAS  Google Scholar 

  162. Gogos CA, Maroulis J, Zoumbos NC, Salsa B, Kalfarentzos F. The effect of parenteral indomethacin on T-lymphocyte subpopulations and cytokine production in patients under major surgical operations. Res Exp Med 1995;195(2):85–92.

    CAS  Google Scholar 

  163. Garcia-Lora A, Algarra I, Collado A, Garrido F. Tumour immunology, vaccination and escape strategies. Eur J Immunogenet 2003;30(3):177–183.

    PubMed  CAS  Google Scholar 

  164. Wang RF. The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends Immunol 2001;22(5):269–276.

    PubMed  Google Scholar 

  165. Bevan MJ. Helping the CD8(+) T-cell response. Nat Rev Immunol 2004;4(8):595–602.

    PubMed  CAS  Google Scholar 

  166. Toes RE, Ossendorp F, Offringa R, Melief CJ. CD4 T cells and their role in antitumor immune responses. J Exp Med 1999;189(5):753–756.

    PubMed  CAS  Google Scholar 

  167. Sharpe AH, Abbas AK. T-cell costimulation--biology, therapeutic potential, and challenges. N Engl J Med 2006;355(10):973–975.

    PubMed  CAS  Google Scholar 

  168. Gerloni M, Zanetti M. CD4 T cells in tumor immunity. Springer Semin Immunopathol 2005;27(1):37–48.

    PubMed  CAS  Google Scholar 

  169. Darrow TL, Abdel-Wahab Z, Seigler HF. Immunotherapy of human melanoma with gene-modified tumor cell vaccines. Cancer Control 1995;2(5):415–423.

    PubMed  Google Scholar 

  170. Dalerba P, Maccalli C, Casati C, Castelli C, Parmiani G. Immunology and immunotherapy of colorectal cancer. Crit Rev Oncol Hematol 2003;46(1):33–57.

    PubMed  Google Scholar 

  171. Hillman GG, Kallinteris NL, Lu X, Wang Y, Wright JL, Li Y, Wu S, Forman JD, Gulfo JV, Humphreys RE, et al. Turning tumor cells in situ into T-helper cell-stimulating, MHC class II tumor epitope-presenters: immuno-curing and immuno-consolidation. Cancer Treat Rev 2004;30(3):281–290.

    PubMed  CAS  Google Scholar 

  172. Arvind P, Papavassiliou ED, Tsioulias GJ, Qiao L, Lovelace CI, Duceman B, Rigas B. Prostaglandin E2 down-regulates the expression of HLA-DR antigen in human colon adenocarcinoma cell lines. Biochemistry 1995;34(16):5604–5609.

    PubMed  CAS  Google Scholar 

  173. Wang RF. Enhancing antitumor immune responses: intracellular peptide delivery and identification of MHC class II-restricted tumor antigens. Immunol Rev 2002;188:65–80.

    PubMed  CAS  Google Scholar 

  174. Magner WJ, Kazim AL, Stewart C, Romano MA, Catalano G, Grande C, Keiser N, Santaniello F, Tomasi TB. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol 2000;165(12):7017–7024.

    PubMed  CAS  Google Scholar 

  175. Wang D, Dubois RN. Prostaglandins and cancer. Gut 2006;55(1):115–122.

    PubMed  CAS  Google Scholar 

  176. Jing H, Vassiliou E, Ganea D. Prostaglandin E2 inhibits production of the inflammatory chemokines CCL3 and CCL4 in dendritic cells. J Leukoc Biol 2003;74(5):868–879.

    PubMed  CAS  Google Scholar 

  177. Jing H, Yen JH, Ganea D. A novel signaling pathway mediates the inhibition of CCL3/4 expression by prostaglandin E2. J Biol Chem 2004;279(53):55176–55186.

    PubMed  CAS  Google Scholar 

  178. Takayama K, Garcia-Cardena G, Sukhova GK, Comander J, Gimbrone MA, Jr., Libby P. Prostaglandin E2 suppresses chemokine production in human macrophages through the EP4 receptor. J Biol Chem 2002;277(46):44147–44154.

    PubMed  CAS  Google Scholar 

  179. Bottazzi B, Polentarutti N, Acero R, Balsari A, Boraschi D, Ghezzi P, Salmona M, Mantovani A. Regulation of the macrophage content of neoplasms by chemoattractants. Science 1983;220(4593):210–212.

    PubMed  CAS  Google Scholar 

  180. Stolina M, Sharma S, Lin Y, Dohadwala M, Gardner B, Luo J, Zhu L, Kronenberg M, Miller PW, Portanova J, et al. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol 2000;164(1):361–370.

    PubMed  CAS  Google Scholar 

  181. Yang L, Yamagata N, Yadav R, Brandon S, Courtney RL, Morrow JD, Shyr Y, Boothby M, Joyce S, Carbone DP, et al. Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Invest 2003;111(5):727–735.

    PubMed  CAS  Google Scholar 

  182. Holla VR, Wang D, Brown JR, Mann JR, Katkuri S, DuBois RN. Prostaglandin E2 regulates the complement inhibitor CD55/decay-accelerating factor in colorectal cancer. J Biol Chem 2005;280(1):476–483.

    PubMed  CAS  Google Scholar 

  183. Trapani JA. Granzymes: a family of lymphocyte granule serine proteases. Genome Biol 2001;2(12):Reviews3014.

    Google Scholar 

  184. Lieberman J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 2003;3(5):361–370.

    PubMed  CAS  Google Scholar 

  185. Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 2006;6(12):940–952.

    PubMed  CAS  Google Scholar 

  186. Waterhouse NJ, Trapani JA. CTL: Caspases Terminate Life, but that’s not the whole story. Tissue Antigens 2002;59(3):175–183.

    PubMed  CAS  Google Scholar 

  187. Raja SM, Metkar SS, Froelich CJ. Cytotoxic granule-mediated apoptosis: unraveling the complex mechanism. Curr Opin Immunol 2003;15(5):528–532.

    PubMed  CAS  Google Scholar 

  188. Clark R, Griffiths GM. Lytic granules, secretory lysosomes and disease. Curr Opin Immunol 2003;15(5):516–521.

    PubMed  CAS  Google Scholar 

  189. Sedelies KA, Sayers TJ, Edwards KM, Chen W, Pellicci DG, Godfrey DI, Trapani JA. Discordant regulation of granzyme H and granzyme B expression in human lymphocytes. J Biol Chem 2004;279(25):26581–26587.

    PubMed  CAS  Google Scholar 

  190. Mandelboim O, Malik P, Davis DM, Jo CH, Boyson JE, Strominger JL. Human CD16 as a lysis receptor mediating direct natural killer cell cytotoxicity. Proc Natl Acad Sci USA 1999;96(10):5640–5644.

    PubMed  CAS  Google Scholar 

  191. Ohtani H. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer. Cancer Immun 2007;7:4.

    PubMed  Google Scholar 

  192. Funada Y, Noguchi T, Kikuchi R, Takeno S, Uchida Y, Gabbert HE. Prognostic significance of CD8+ T cell and macrophage peritumoral infiltration in colorectal cancer. Oncol Rep 2003;10(2):309–313.

    PubMed  Google Scholar 

  193. Hiraoka K, Miyamoto M, Cho Y, Suzuoki M, Oshikiri T, Nakakubo Y, Itoh T, Ohbuchi T, Kondo S, Katoh H. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 2006;94(2):275–280.

    PubMed  CAS  Google Scholar 

  194. Bui JD, Uppaluri R, Hsieh CS, Schreiber RD. Comparative analysis of regulatory and effector T cells in progressively growing versus rejecting tumors of similar origins. Cancer Res 2006;66(14):7301–7309.

    PubMed  CAS  Google Scholar 

  195. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005;353(25):2654–2666.

    PubMed  CAS  Google Scholar 

  196. Klintrup K, Makinen JM, Kauppila S, Vare PO, Melkko J, Tuominen H, Tuppurainen K, Makela J, Karttunen TJ, Makinen MJ. Inflammation and prognosis in colorectal cancer. Eur J Cancer 2005;41(17):2645–2654.

    PubMed  Google Scholar 

  197. Cuschieri A, Talbot IC, Weeden S. Influence of pathological tumour variables on long-term survival in resectable gastric cancer. Br J Cancer 2002;86(5):674–679.

    PubMed  CAS  Google Scholar 

  198. Wanebo HJ, Riley T, Katz D, Pace RC, Johns ME, Cantrell RW. Indomethacin sensitive suppressor-cell activity in head and neck cancer patients. The role of the adherent mononuclear cell. Cancer 1988;61(3):462–474.

    PubMed  CAS  Google Scholar 

  199. Han T, Nemoto T, Ledesma EJ, Bruno S. Enhancement of T lymphocyte proliferative response to mitogens by indomethacin in breast and colorectal cancer patients. Int J Immunopharmacol 1983;5(1):11–15.

    PubMed  CAS  Google Scholar 

  200. Balch CM, Dougherty PA, Cloud GA, Tilden AB. Prostaglandin E2-mediated suppression of cellular immunity in colon cancer patients. Surgery 1984;95(1):71–77.

    PubMed  CAS  Google Scholar 

  201. Soppi E, Eskola J, Ruuskanen O. Effects of indomethacin on lymphocyte proliferation, suppressor cell function, and leukocyte migration inhibitory factor (lmif) production. Immunopharmacology 1982;4(3):235–242.

    PubMed  CAS  Google Scholar 

  202. Beyer M, Schultze JL. Regulatory T cells in cancer. Blood 2006;108(3):804–811.

    PubMed  CAS  Google Scholar 

  203. Muller AJ, Scherle PA. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat Rev Cancer 2006;6(8):613–625.

    PubMed  CAS  Google Scholar 

  204. Harris RE, Beebe-Donk J, Doss H, Burr Doss D. Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade (review). Oncol Rep 2005;13(4):559–583.

    PubMed  CAS  Google Scholar 

  205. Hawk E, Patterson S. Aspirin: anticolorectal adenocarcinoma activity in the adjuvant arena? Future Oncol 2010;6(2):197–200.

    PubMed  CAS  Google Scholar 

  206. Holmes MD, Chen WY, Li L, Hertzmark E, Spiegelman D, Hankinson SE. Aspirin intake and survival after breast cancer. J Clin Oncol 2010(Feb 16).

    Google Scholar 

  207. Mahmud SM, Franco EL, Aprikian AG. Use of non-steroidal anti-inflammatory drugs (NSAIDs) and prostate cancer risk: a meta-analysis. Int J Cancer 2010(Jan 20).

    Google Scholar 

  208. Arber N, Eagle CJ, Spicak J, Racz I, Dite P, Hajer J, Zavoral M, Lechuga MJ, Gerletti P, Tang J, et al. Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med 2006;355(9):885–895.

    PubMed  CAS  Google Scholar 

  209. Iwama T, Akasu T, Utsunomiya J, Muto T. Does a selective cyclooxygenase-2 inhibitor (tiracoxib) induce clinically sufficient suppression of adenomas in patients with familial adenomatous polyposis? A randomized double-blind placebo-controlled clinical trial. Int J Clin Oncol 2006;11(2):133–139.

    PubMed  CAS  Google Scholar 

  210. Sooriakumaran P, Coley HM, Fox SB, Macanas-Pirard P, Lovell DP, Henderson A, Eden CG, Miller PD, Langley SE, Laing RW. A randomized controlled trial investigating the effects of celecoxib in patients with localized prostate cancer. Anticancer Res 2009;29(5):1483–1488.

    PubMed  CAS  Google Scholar 

  211. Huang MT, Chen ZX, Wei B, Zhang B, Wang CH, Huang MH, Liu R, Tang CW. Preoperative growth inhibition of human gastric adenocarcinoma treated with a combination of celecoxib and octreotide. Acta Pharmacol Sin 2007;28(11):1842–1850.

    PubMed  CAS  Google Scholar 

  212. Zhang LJ, Wang SY, Huo XH, Zhu ZL, Chu JK, Ma JC, Cui DS, Gu P, Zhao ZR, Wang MW, et al. Anti-Helicobacter pylori therapy followed by celecoxib on progression of gastric precancerous lesions. World J Gastroenterol 2009;15(22):2731–2738.

    PubMed  CAS  Google Scholar 

  213. Baron JA, Sandler RS, Bresalier RS, Quan H, Riddell R, Lanas A, Bolognese JA, Oxenius B, Horgan K, Loftus S, et al. A randomized trial of rofecoxib for the chemoprevention of colorectal adenomas. Gastroenterology 2006;131(6):1674–1682.

    PubMed  CAS  Google Scholar 

  214. Bresalier RS, Sandler RS, Quan H, Bolognese JA, Oxenius B, Horgan K, Lines C, Riddell R, Morton D, Lanas A, et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 2005;352(11):1092–1102.

    PubMed  CAS  Google Scholar 

  215. Kerr DJ, Dunn JA, Langman MJ, Smith JL, Midgley RS, Stanley A, Stokes JC, Julier P, Iveson C, Duvvuri R, et al. Rofecoxib and cardiovascular adverse events in adjuvant treatment of colorectal cancer. N Engl J Med 2007;357(4):360–369.

    PubMed  CAS  Google Scholar 

  216. McGettigan P, Henry D. Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA 2006;296(13):1633–1644.

    PubMed  CAS  Google Scholar 

  217. Edelman MJ, Watson D, Wang X, Morrison C, Kratzke RA, Jewell S, Hodgson L, Mauer AM, Gajra A, Masters GA, et al. Eicosanoid modulation in advanced lung cancer: cyclooxygenase-2 expression is a positive predictive factor for celecoxib + chemotherapy--Cancer and Leukemia Group B Trial 30203. J Clin Oncol 2008;26(6):848–55.

    PubMed  CAS  Google Scholar 

  218. Yin M, Gopal V, Banavali S, Gartside P, Preisler H. Effects of an IL-1 receptor antagonist on acute myeloid leukemia cells. Leukemia 1992;6(9):898–901.

    PubMed  CAS  Google Scholar 

  219. Wiedenmann B, Malfertheiner P, Friess H, Ritch P, Arseneau J, Mantovani G, Caprioni F, Van Cutsem E, Richel D, DeWitte M, et al. A multicenter, phase II study of infliximab plus gemcitabine in pancreatic cancer cachexia. J Support Oncol 2008;6(1):18–25.

    PubMed  CAS  Google Scholar 

  220. Lundholm K, Daneryd P, Bosaeus I, Körner U, Lindholm E. Palliative nutritional intervention in addition to cyclooxygenase and erythropoietin treatment for patients with malignant disease: effects on survival, metabolism and function. A randomized prospetive study. Cancer 2004;100:1967–1977.

    PubMed  CAS  Google Scholar 

  221. Lundholm K, Korner U, Gunnebo L, Sixt-Ammilon P, Fouladiun M, Daneryd P, Bosaeus I. Insulin treatment in cancer cachexia: effects on survival, metabolism, and physical functioning. Clin Cancer Res 2007;13(9):2699–2706.

    PubMed  CAS  Google Scholar 

  222. Neary NM, Small CJ, Wren AM, Lee JL, Druce MR, Palmieri C, Frost GS, Ghatei MA, Coombes RC, Bloom SR. Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J Clin Endocrinol Metab 2004;89(6):2832–2836.

    PubMed  CAS  Google Scholar 

  223. Lundholm K, Gunnebo L, Körner U, Engström C, Hyltander A, Smedh U, Bosaeus I. Effects by daily long term provision of ghrelin to unselected weight-losing cancer patients. A randomized double-blind study. Cancer 15 2010; 116 (8): 2044–2052.

    Google Scholar 

  224. Daneryd P, Svanberg E, Korner U, Lindholm E, Sandstrom R, Brevinge H, Pettersson C, Bosaeus I, Lundholm K. Protection of metabolic and exercise capacity in unselected weight- losing cancer patients following treatment with recombinant erythropoietin: a randomized prospective study. Cancer Res 1998;58(23):5374–5379.

    PubMed  CAS  Google Scholar 

  225. Lindholm E, Daneryd P, Korner U, Hyltander A, Fouladiun M, Lundholm K. Effects of recombinant erythropoietin in palliative treatment of unselected cancer patients. Clin Cancer Res 2004;10(20):6855–6864.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent Lundholm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Smedh, U., Gustafsson, A., Axelsson, H., Cahlin, C., Lönnroth, C., Lundholm, K. (2010). The Impact of Inflammation Control and Active Cancer Palliation on Metabolic Pathways Determining Tumor Progression and Patient Survival. In: Reichle, A. (eds) From Molecular to Modular Tumor Therapy. The Tumor Microenvironment, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9531-2_15

Download citation

Publish with us

Policies and ethics