Skip to main content

Molecular Mechanisms of Post-Ischemic Angiogenesis in the Brain

  • Chapter
  • First Online:
Therapeutic Angiogenesis for Vascular Diseases
  • 724 Accesses

Abstract

Angiogenesis, the growth of new blood vessels, could be interpreted as a natural defense mechanism helping to restore oxygen and nutrient supply to the ischemic brain tissue. This chapter will summarize molecular mechanisms of post-ischemic angiogenesis including observations regarding the timing of new vessel formation, change of expression of angiogenic factors as well as data describing the recruitment of endothelial progenitor cells towards the infarcted brain. Finally, this book chapter will focus on therapeutic attempts to increase post-ischemic angiogenesis in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovitch R, Neeman M, et al. (1998) Intercellular communication between vascular smooth muscle and endothelial cells mediated by heparin-binding epidermal growth factor-like growth factor and vascular endothelial growth factor. FEBS Lett 425:441–447

    PubMed  CAS  Google Scholar 

  • Amarenco P, Bogousslavsky J, et al. (2003) Design and baseline characteristics of the stroke prevention by aggressive reduction in cholesterol levels (SPARCL) study. Cerebrovasc Dis 16:389–395

    PubMed  Google Scholar 

  • Asahara T, Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287:C572–C579

    PubMed  CAS  Google Scholar 

  • Asahara T, Murohara T, et al. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    PubMed  CAS  Google Scholar 

  • Baigent C, Keech A, et al. (2005) Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366:1267–1278

    PubMed  CAS  Google Scholar 

  • Bao WL, Lu SD, et al. (1999) Intraventricular vascular endothelial growth factor antibody increases infarct volume following transient cerebral ischemia. Zhongguo Yao Li Xue Bao 20:313–318

    PubMed  CAS  Google Scholar 

  • Baranova O, Miranda LF, et al. (2007) Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci 27:6320–6332

    PubMed  CAS  Google Scholar 

  • Bath PM, Willmot M, et al. (2002) Nitric oxide donors (nitrates), L-arginine, or nitric oxide synthase inhibitors for acute stroke. Cochrane Database Syst Rev 4: CD000398

    Google Scholar 

  • Beck H, Acker T, et al. (2002) Cell type-specific expression of neuropilins in an MCA-occlusion model in mice suggests a potential role in post-ischemic brain remodeling. J Neuropathol Exp Neurol 61:339–350

    PubMed  CAS  Google Scholar 

  • Beck H, Acker T, et al. (2000) Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am J Pathol 157:1473–1483

    PubMed  CAS  Google Scholar 

  • Beck H, Voswinckel R, et al. (2003) Participation of bone marrow-derived cells in long-term repair processes after experimental stroke. J Cereb Blood Flow Metab 23:709–717

    PubMed  Google Scholar 

  • Bernaudin M, Bellail A, et al. (2000) Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain. Glia 30:271–278

    PubMed  CAS  Google Scholar 

  • Bernaudin M, Marti HH, et al. (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19:643–651

    PubMed  CAS  Google Scholar 

  • Bogousslavsky J, Victor SJ, et al. (2002) Fiblast (trafermin) in acute stroke: results of the European-Australian phase II/III safety and efficacy trial. Cerebrovasc Dis 14:239–251

    PubMed  CAS  Google Scholar 

  • Carmeliet P (2000) Fibroblast growth factor-1 stimulates branching and survival of myocardial arteries: a goal for therapeutic angiogenesis? Circ Res 87:176–178

    PubMed  CAS  Google Scholar 

  • Carmeliet P, Ferreira V, et al. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439

    PubMed  CAS  Google Scholar 

  • Carmeliet P, Moons L, et al. (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583

    PubMed  CAS  Google Scholar 

  • Chavez JC, Lamanna JC (2002) Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: Potential role of insulin-like growth factor-1. J Neurosci 22:8922–8931

    PubMed  CAS  Google Scholar 

  • Cheitlin MD, Hutter AM, Jr., et al. (1999) ACC/AHA expert consensus document. Use of sildenafil (Viagra) in patients with cardiovascular disease. American College of Cardiology/American Heart Association. J Am Coll Cardiol 33:273–282

    PubMed  CAS  Google Scholar 

  • Chen H, Bagri A, et al. (2000) Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25:43–56

    PubMed  Google Scholar 

  • Chen HH, Chien CH, et al. (1994) Correlation between angiogenesis and basic fibroblast growth factor expression in experimental brain infarct. Stroke 25:1651–1657

    PubMed  CAS  Google Scholar 

  • Chen J, Chopp M (2006) Neurorestorative treatment of stroke: Cell and pharmacological approaches. NeuroRx 3:466–473

    PubMed  CAS  Google Scholar 

  • Chen J, Li Y, et al. (2004) Combination therapy of stroke in rats with a nitric oxide donor and human bone marrow stromal cells enhances angiogenesis and neurogenesis. Brain Res 1005:21–28

    PubMed  CAS  Google Scholar 

  • Chen J, Zacharek A, et al. (2005a) Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. J Neurosci 25:2366–2375

    PubMed  CAS  Google Scholar 

  • Chen J, Zhang C, et al. (2005b) Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Metab 25:281–290

    Google Scholar 

  • Chen J, Zhang ZG, et al. (2003) Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol 53:743–751

    PubMed  CAS  Google Scholar 

  • Cobbs CS, Chen J, et al. (1998) Vascular endothelial growth factor expression in transient focal cerebral ischemia in the rat. Neurosci Lett 249:79–82

    PubMed  CAS  Google Scholar 

  • Dahlof B, Devereux RB, et al. (2002) Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet 359:995–1003

    PubMed  CAS  Google Scholar 

  • Date I, Takagi N, et al. (2006) Hepatocyte growth factor attenuates cerebral ischemia-induced increase in permeability of the blood-brain barrier and decreases in expression of tight junctional proteins in cerebral vessels. Neurosci Lett 407:141–145

    PubMed  CAS  Google Scholar 

  • Demetri GD, Griffin JD (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78:2791–2808

    PubMed  CAS  Google Scholar 

  • Digicaylioglu M, Bichet S, et al. (1995) Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci USA 92:3717–3720

    PubMed  CAS  Google Scholar 

  • Ding G, Jiang Q, et al. (2008) Magnetic resonance imaging investigation of axonal remodeling and angiogenesis after embolic stroke in sildenafil-treated rats. J Cereb Blood Flow Metab 28:1440–1448

    PubMed  CAS  Google Scholar 

  • Ding S, Merkulova-Rainon T, et al. (2003) HGF receptor up-regulation contributes to the angiogenic phenotype of human endothelial cells and promotes angiogenesis in vitro. Blood 101:4816–4822

    PubMed  CAS  Google Scholar 

  • Ding YH, Luan XD, et al. (2004) Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion injury in stroke. Curr Neurovasc Res 1:411–420

    PubMed  CAS  Google Scholar 

  • Ehrenreich H, Hasselblatt M, et al. (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8:495–505

    PubMed  CAS  Google Scholar 

  • Ema M, Taya S, et al. (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94:4273–4278

    PubMed  CAS  Google Scholar 

  • Fan Y, Yang GY (2007) Therapeutic angiogenesis for brain ischemia: A brief review. J Neuroimmune Pharmacol. 2:284–289

    PubMed  Google Scholar 

  • Ferrara N, Carver-Moore K, et al. (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    PubMed  CAS  Google Scholar 

  • Ferrario C, Abdelhamed AI (2004) AII antagonists in hypertension, heart failure, and diabetic nephropathy: focus on losartan. Curr Med Res Opin 20:279–293

    PubMed  CAS  Google Scholar 

  • Ferrario CM (2004) The role of angiotensin antagonism in stroke prevention in patients with hypertension: focus on losartan. Curr Med Res Opin 20:1797–1804

    PubMed  CAS  Google Scholar 

  • Flamme I, Frohlich T, et al. (1997) HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev 63:51–60

    PubMed  CAS  Google Scholar 

  • Fong GH, Rossant J, et al. (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70

    PubMed  CAS  Google Scholar 

  • Forder JP, Munzenmaier DH (2005) Angiogenic protection from focal ischemia with angiotensin II type 1 receptor blockade in the rat. Am J Physiol Heart Circ Physiol 288:H1989–H1996

    PubMed  CAS  Google Scholar 

  • Forsythe JA, Jiang BH, et al. (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    PubMed  CAS  Google Scholar 

  • Freeman RS, Hasbani DM, et al. (2003) SM-20, EGL-9, and the EGLN family of hypoxia-inducible factor prolyl hydroxylases. Mol Cells 16:1–12

    PubMed  CAS  Google Scholar 

  • Fuh G, Garcia KC (2000) The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1. J Biol Chem 275:26690–26695

    PubMed  CAS  Google Scholar 

  • Gale NW, Thurston G, et al. (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3:411–423

    PubMed  CAS  Google Scholar 

  • Gertz K, Priller J, et al. (2006) Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ Res 99:1132–1140

    PubMed  CAS  Google Scholar 

  • Gerwins P, Skoldenberg E (2000) Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit Rev Oncol Hematol 34:185–194

    PubMed  CAS  Google Scholar 

  • Giger RJ, Cloutier JF, et al. (2000) Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron 25:29–41

    PubMed  CAS  Google Scholar 

  • Gluzman-Poltorak Z, Cohen T, et al. (2000) Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 [corrected]. J Biol Chem 275:18040–18045

    PubMed  CAS  Google Scholar 

  • Gluzman-Poltorak Z, Cohen T, et al. (2001) Vascular endothelial growth factor receptor-1 and neuropilin-2 form complexes. J Biol Chem 276:18688–18694

    PubMed  CAS  Google Scholar 

  • Goishi K, Higashiyama S, et al. (1995) Phorbol ester induces the rapid processing of cell surface heparin-binding EGF-like growth factor: conversion from juxtacrine to paracrine growth factor activity. Mol Biol Cell 6:967–980

    PubMed  CAS  Google Scholar 

  • Gunsilius E, Petzer AL, et al. (2001) Serial measurement of vascular endothelial growth factor and transforming growth factor-beta1 in serum of patients with acute ischemic stroke. Stroke 32:275–278

    PubMed  CAS  Google Scholar 

  • Hambrecht R, Adams V, et al. (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107:3152–3158

    PubMed  CAS  Google Scholar 

  • Hanabusa K, Nagaya N, et al. (2005) Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats. Stroke 36:853–858

    PubMed  CAS  Google Scholar 

  • Haqqani AS, Nesic M, et al. (2005) Characterization of vascular protein expression patterns in cerebral ischemia/reperfusion using laser capture microdissection and ICAT-nanoLC-MS/MS. FASEB J 19:1809–1821

    PubMed  CAS  Google Scholar 

  • Hara Y, Tooyama I, et al. (1994) Acidic fibroblast growth factor-like immunoreactivity in rat brain following cerebral infarction. Brain Res 664:101–107

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Lam T, et al. (2001) Abnormal balance in the angiopoietin-tie2 system in human brain arteriovenous malformations. Circ Res 89:111–113

    PubMed  CAS  Google Scholar 

  • Hayashi T, Abe K, et al. (1998a) Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metab 18:887–895

    PubMed  CAS  Google Scholar 

  • Hayashi T, Abe K, et al. (1998b) Inductions of hepatocyte growth factor and its activator in rat brain with permanent middle cerebral artery occlusion. Brain Res 799:311–316

    PubMed  CAS  Google Scholar 

  • Hayashi T, Abe K, et al. (1997) Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 28:2039–2044

    PubMed  CAS  Google Scholar 

  • Hayashi T, Deguchi K, et al. (2006) Cerebral ischemia and angiogenesis. Curr Neurovasc Res 3:119–129

    PubMed  CAS  Google Scholar 

  • Hayashi T, Noshita N, et al. (2003) Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab 23:166–180

    PubMed  CAS  Google Scholar 

  • Hess DC, Hill WD, et al. (2002) Bone marrow as a source of endothelial cells and NeuN-expressing cells After stroke. Stroke 33:1362–1368

    PubMed  Google Scholar 

  • Hewitson KS, McNeill LA, et al. (2002) Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 277:26351–26355

    PubMed  CAS  Google Scholar 

  • Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    PubMed  CAS  Google Scholar 

  • Hiratsuka S, Minowa O, et al. (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 95:9349–9354

    PubMed  CAS  Google Scholar 

  • Hood J, Granger HJ (1998) Protein kinase G mediates vascular endothelial growth factor-induced Raf-1 activation and proliferation in human endothelial cells. J Biol Chem 273:23504–23508

    PubMed  CAS  Google Scholar 

  • Huang Z, Huang PL, et al. (1996) Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 16:981–987

    PubMed  CAS  Google Scholar 

  • Iihara K, Hashimoto N, et al. (1997) Platelet-derived growth factor-BB, but not -AA, prevents delayed neuronal death after forebrain ischemia in rats. J Cereb Blood Flow Metab 17:1097–1106

    PubMed  CAS  Google Scholar 

  • Iihara K, Sasahara M, et al. (1996) Induction of platelet-derived growth factor beta-receptor in focal ischemia of rat brain. J Cereb Blood Flow Metab 16:941–949

    PubMed  CAS  Google Scholar 

  • Iihara K, Sasahara M, et al. (1994) Ischemia induces the expression of the platelet-derived growth factor-B chain in neurons and brain macrophages in vivo. J Cereb Blood Flow Metab 14:818–824

    PubMed  CAS  Google Scholar 

  • Imamura R, Okumi M, et al. (2008) Carbamylated erythropoietin improves angiogenesis and protects the kidneys from ischemia-reperfusion injury. Cell Transplant 17:135–141

    PubMed  Google Scholar 

  • Issa R, AlQteishat A, et al. (2005) Expression of basic fibroblast growth factor mRNA and protein in the human brain following ischaemic stroke. Angiogenesis 8:53–62

    PubMed  CAS  Google Scholar 

  • Issa R, Krupinski J, et al. (1999) Vascular endothelial growth factor and its receptor, KDR, in human brain tissue after ischemic stroke. Lab Invest 79:417–425

    PubMed  CAS  Google Scholar 

  • Jackson G, Keltai M, et al. (2005) Hemodynamic effects of sildenafil citrate and isosorbide mononitrate in men with coronary artery disease and erectile dysfunction. J Sex Med 2:407–414

    PubMed  CAS  Google Scholar 

  • Jin K, Mao XO, et al. (2002) Heparin-binding epidermal growth factor-like growth factor: hypoxia-inducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. J Neurosci 22:5365–5373

    PubMed  CAS  Google Scholar 

  • Jin K, Sun Y, et al. (2004) Post-ischemic administration of heparin-binding epidermal growth factor-like growth factor (HB-EGF) reduces infarct size and modifies neurogenesis after focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 24:399–408

    PubMed  Google Scholar 

  • Jin K, Zhu Y, et al. (2002b) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 99:11946–11950

    PubMed  CAS  Google Scholar 

  • Jin KL, Mao XO, et al. (2000) Vascular endothelial growth factor: Direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA 97:10242–10247

    PubMed  CAS  Google Scholar 

  • Kataoka M, Satoh T, et al. (2004) Marked improvement with sildenafil in a patient with primary pulmonary hypertension unresponsive to epoprostenol. Intern Med 43:945–950

    PubMed  Google Scholar 

  • Kato H, Shichiri M, et al. (1997) Adrenomedullin as an autocrine/paracrine apoptosis survival factor for rat endothelial cells. Endocrinology 138:2615–2620

    PubMed  CAS  Google Scholar 

  • Kawahara N, Mishima K, et al. (1999) The gene for heparin-binding epidermal growth factor-like growth factor is stress-inducible: its role in cerebral ischemia. J Cereb Blood Flow Metab 19:307–320

    PubMed  CAS  Google Scholar 

  • Kawamata T, Dietrich WD, et al. (1997) Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci USA 94:8179–8184

    PubMed  CAS  Google Scholar 

  • Kawasaki T, Kitsukawa T, et al. (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902

    PubMed  CAS  Google Scholar 

  • Kimura R, Nakase H, et al. (2005) Vascular endothelial growth factor antagonist reduces brain edema formation and venous infarction. Stroke 36:1259–1263

    PubMed  CAS  Google Scholar 

  • Kitsukawa T, Shimono A, et al. (1995) Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development 121:4309–4318

    PubMed  CAS  Google Scholar 

  • Kojda G, Cheng YC, et al. (2001) Dysfunctional regulation of endothelial nitric oxide synthase (eNOS) expression in response to exercise in mice lacking one eNOS gene. Circulation 103:2839–2844

    PubMed  CAS  Google Scholar 

  • Kotch LE, Iyer NV, et al. (1999) Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 209:254–267

    PubMed  CAS  Google Scholar 

  • Kovacs Z, Ikezaki K, et al. (1996) VEGF and flt. Expression time kinetics in rat brain infarct. Stroke 27:1865–1872

    PubMed  CAS  Google Scholar 

  • Krupinski J, Issa R, et al. (1997) A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans. Stroke 28:564–573

    PubMed  CAS  Google Scholar 

  • Krupinski J, Kaluza J, et al. (1994) Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25:1794–1798

    PubMed  CAS  Google Scholar 

  • Krupinski J, Kumar P, et al. (1996) Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans. Stroke 27:852–857

    PubMed  CAS  Google Scholar 

  • Kurozumi K, Nakamura K, et al. (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11:96–104

    PubMed  CAS  Google Scholar 

  • Lando D, Peet DJ, et al. (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295:858–861

    PubMed  CAS  Google Scholar 

  • Lee HJ, Kim KS, et al. (2007) Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS ONE 2:e156

    PubMed  Google Scholar 

  • Lee MY, Ju WK, et al. (1999) Expression of vascular endothelial growth factor mRNA following transient forebrain ischemia in rats. Neurosci Lett 265:107–110

    PubMed  CAS  Google Scholar 

  • Lee ST, Chu K, et al. (2005) Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res 1058:120–128

    PubMed  CAS  Google Scholar 

  • Lehrke M, Lazar MA (2005) The many faces of PPARgamma. Cell 123:993–999

    PubMed  CAS  Google Scholar 

  • Leist M, Ghezzi P, et al. (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305:239–242

    PubMed  CAS  Google Scholar 

  • Lennmyr F, Ata KA, et al. (1998) Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol 57:874–882

    PubMed  CAS  Google Scholar 

  • Leventhal C, Rafii S, et al. (1999) Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 13:450–464

    PubMed  CAS  Google Scholar 

  • Li F, Chong ZZ, Maiese K (2004) Erythropoietin on a tightrope: balancing neuronal and vascular protection between intrinsic and extrinsic pathways. Neurosignals 13:265–289

    PubMed  Google Scholar 

  • Li L, Jiang Q, et al. (2007a) Angiogenesis and improved cerebral blood flow in the ischemic boundary area detected by MRI after administration of sildenafil to rats with embolic stroke. Brain Res 1132:185–192

    PubMed  CAS  Google Scholar 

  • Li Q, Stephenson D (2002a) Postischemic administration of basic fibroblast growth factor improves sensorimotor function and reduces infarct size following permanent focal cerebral ischemia in the rat. Exp Neurol 177:531–537

    PubMed  CAS  Google Scholar 

  • Li Y, Chen J, et al. (2002b) Human marrow stromal cell therapy for stroke in rat: Neurotrophins and functional recovery. Neurology 59:514–523

    PubMed  CAS  Google Scholar 

  • Li Y, Lu Z, et al. (2007b) Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J Cereb Blood Flow Metab 27:1043–1054

    PubMed  CAS  Google Scholar 

  • Li Y, Lu ZY, et al. (2007c) Erythropoietin prevents blood brain barrier damage induced by focal cerebral ischemia in mice. Neurochem Res 32:2132–2141

    PubMed  CAS  Google Scholar 

  • Liao JK (2005) Clinical implications for statin pleiotropy. Curr Opin Lipidol 16:624–629

    PubMed  CAS  Google Scholar 

  • Lin TN, Nian GM, et al. (2001) Induction of Tie-1 and Tie-2 receptor protein expression after cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 21:690–701

    PubMed  CAS  Google Scholar 

  • Lin TN, Te J, et al. (1997) Induction of basic fibroblast growth factor (bFGF) expression following focal cerebral ischemia. Brain Res Mol Brain Res 49:255–265

    PubMed  CAS  Google Scholar 

  • Lin TN, Wang CK, et al. (2000) Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 20:387–395

    PubMed  CAS  Google Scholar 

  • Lindahl P, Johansson BR, et al. (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    PubMed  CAS  Google Scholar 

  • Liu H, Honmou O, et al. (2006) Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain 129:2734–2745

    PubMed  CAS  Google Scholar 

  • Mahon PC, Hirota K, et al. (2001) FIH-1: A novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675–2686

    PubMed  CAS  Google Scholar 

  • Maisonpierre PC, Suri C, et al. (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    PubMed  CAS  Google Scholar 

  • Majka M, Janowska-Wieczorek A, et al. (2001) Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 97:3075–3085

    PubMed  CAS  Google Scholar 

  • Manson JE, Greenland P, et al. (2002) Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N Engl J Med 347:716–725

    PubMed  Google Scholar 

  • Marti HH, Risau W (1998) Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci USA 95:15809–15814

    PubMed  CAS  Google Scholar 

  • Marti HH, Wenger RH, et al. (1996) Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci 8:666–676

    PubMed  CAS  Google Scholar 

  • Marti HJ, Bernaudin M, et al. (2000) Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156:965–976

    PubMed  CAS  Google Scholar 

  • Massague J (1990) The transforming growth factor-beta family. Annu Rev Cell Biol 6:597–641

    PubMed  CAS  Google Scholar 

  • Matsuzaki H, Tamatani M, et al. (2001) Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: Signal transduction cascades. FASEB J 15:1218–1220

    PubMed  CAS  Google Scholar 

  • Maxwell PH (2004) HIF-1’s relationship to oxygen: simple yet sophisticated. Cell Cycle 3:156–159

    PubMed  CAS  Google Scholar 

  • Maxwell PH, Ratcliffe PJ (2002) Oxygen sensors and angiogenesis. Semin. Cell Dev Biol 13:29–37

    PubMed  CAS  Google Scholar 

  • Migdal M, Huppertz B, et al. (1998) Neuropilin-1 is a placenta growth factor-2 receptor. J Biol Chem 273:22272–22278

    PubMed  CAS  Google Scholar 

  • Miller DL, Ortega S, et al. (2000) Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol 20:2260–2268

    PubMed  CAS  Google Scholar 

  • Mishima K, Higashiyama S, et al. (1996) Regional distribution of heparin-binding epidermal growth factor-like growth factor mRNA and protein in adult rat forebrain. Neurosci Lett 213:153–156

    PubMed  CAS  Google Scholar 

  • Miyazawa T, Matsumoto K, et al. (1998) Protection of hippocampal neurons from ischemia-induced delayed neuronal death by hepatocyte growth factor: A novel neurotrophic factor. J Cereb Blood Flow Metab 18:345–348

    PubMed  CAS  Google Scholar 

  • Monacci WT, Merrill MJ, et al. (1993) Expression of vascular permeability factor/vascular endothelial growth factor in normal rat tissues. Am J Physiol 264:C995–1002

    PubMed  CAS  Google Scholar 

  • Munzenmaier DH, Greene AS (1996) Opposing actions of angiotensin II on microvascular growth and arterial blood pressure. Hypertension 27:760–765

    PubMed  CAS  Google Scholar 

  • Munzenmaier DH, Greene AS (2006) Chronic angiotensin II AT1 receptor blockade increases cerebral cortical microvessel density. Am J Physiol Heart Circ Physiol 290:H512–H516

    PubMed  CAS  Google Scholar 

  • Murasawa S, Asahara T (2005) Endothelial progenitor cells for vasculogenesis. Physiology (Bethesda.) 20:36–42

    CAS  Google Scholar 

  • Murohara T, Asahara T, et al. (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101:2567–2578

    PubMed  CAS  Google Scholar 

  • Odorisio T, Schietroma C, et al. (2002) Mice overexpressing placenta growth factor exhibit increased vascularization and vessel permeability. J Cell Sci 115:2559–2567

    PubMed  CAS  Google Scholar 

  • Onda T, Honmou O, et al. (2008) Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab 28:329–340

    PubMed  CAS  Google Scholar 

  • Peng J, Zhang L, et al. (2000) The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci USA 97:8386–8391

    PubMed  CAS  Google Scholar 

  • Pichiule P, Agani F, et al. (2003) HIF-1 alpha and VEGF expression after transient global cerebral ischemia. Adv Exp Med Biol 530:611–617

    PubMed  CAS  Google Scholar 

  • Pistrosch F, Herbrig K, et al. (2005) PPARgamma-agonist rosiglitazone increases number and migratory activity of cultured endothelial progenitor cells. Atherosclerosis 183:163–167

    PubMed  CAS  Google Scholar 

  • Plate KH, Beck H, et al. (1999) Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J Neuropathol Exp Neurol 58:654–666

    PubMed  CAS  Google Scholar 

  • Puri MC, Rossant J, et al. (1995) The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J 14:5884–5891

    PubMed  CAS  Google Scholar 

  • Ratan RR, Siddiq A, et al. (2004) Translation of ischemic preconditioning to the patient: Prolyl hydroxylase inhibition and hypoxia inducible factor-1 as novel targets for stroke therapy. Stroke 35:2687–2689

    PubMed  Google Scholar 

  • Renner O, Tsimpas A, et al. (2003) Time- and cell type-specific induction of platelet-derived growth factor receptor-beta during cerebral ischemia. Brain Res Mol Brain Res 113:44–51

    PubMed  CAS  Google Scholar 

  • Ribatti D, Presta M, et al. (1999) Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93:2627–2636

    PubMed  CAS  Google Scholar 

  • Ribatti D, Vacca A, et al. (2003) Erythropoietin as an angiogenic factor. Eur J Clin Invest 33:891–896

    PubMed  CAS  Google Scholar 

  • Roberts AB, Sporn MB, et al. (1986) Transforming growth factor type beta: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171

    PubMed  CAS  Google Scholar 

  • Rudic RD, Shesely EG, et al. (1998) Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest 101:731–736

    PubMed  CAS  Google Scholar 

  • Sacco RL, Gan R, et al. (1998) Leisure-time physical activity and ischemic stroke risk: The northern manhattan stroke study. Stroke 29:380–387

    PubMed  CAS  Google Scholar 

  • Salom JB, Orti M, et al. (2000) Reduction of infarct size by the NO donors sodium nitroprusside and spermine/NO after transient focal cerebral ischemia in rats. Brain Res 865:149–156

    PubMed  CAS  Google Scholar 

  • Sato TN, Tozawa Y, et al. (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74

    PubMed  CAS  Google Scholar 

  • Schanzer A, Wachs FP, et al. (2004) Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol 14:237–248

    PubMed  Google Scholar 

  • Semenza GL (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107:1–3

    PubMed  CAS  Google Scholar 

  • Shalaby F, Rossant J, et al. (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    PubMed  CAS  Google Scholar 

  • Sheth A, Park JE, et al. (2005) Early haemodynamic benefit of sildenafil in patients with coexisting chronic thromboembolic pulmonary hypertension and left ventricular dysfunction. Vascul Pharmacol 42:41–45

    PubMed  CAS  Google Scholar 

  • Shimamura M, Sato N, et al. (2004) Novel therapeutic strategy to treat brain ischemia: Overexpression of hepatocyte growth factor gene reduced ischemic injury without cerebral edema in rat model. Circulation 109:424–431

    PubMed  CAS  Google Scholar 

  • Shimamura M, Sato N, et al. (2007) Delayed postischemic treatment with fluvastatin improved cognitive impairment after stroke in rats. Stroke 38:3251–3258

    PubMed  CAS  Google Scholar 

  • Shingo T, Sorokan ST, et al. (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 21:9733–9743

    PubMed  CAS  Google Scholar 

  • Shyu WC, Lin SZ, et al. (2004) Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110:1847–1854

    PubMed  CAS  Google Scholar 

  • Slevin M, Krupinski J, et al. (2000) Serial measurement of vascular endothelial growth factor and transforming growth factor-beta1 in serum of patients with acute ischemic stroke. Stroke 31:1863–1870

    PubMed  CAS  Google Scholar 

  • Sobrino T, Hurtado O, et al. (2007) The increase of circulating endothelial progenitor cells after acute ischemic stroke is associated with good outcome. Stroke 38:2759–2764

    PubMed  Google Scholar 

  • Soker S, Miao HQ, et al. (2002) VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 85:357–368

    PubMed  CAS  Google Scholar 

  • Soker S, Takashima S, et al. (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745

    PubMed  CAS  Google Scholar 

  • Stratmann A, Risau W, Plate KH (1998) Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153:1459–1466

    PubMed  CAS  Google Scholar 

  • Sugiura S, Kitagawa K, et al. (2005) Adenovirus-mediated gene transfer of heparin-binding epidermal growth factor-like growth factor enhances neurogenesis and angiogenesis after focal cerebral ischemia in rats. Stroke 36:859–864

    PubMed  CAS  Google Scholar 

  • Sun Y, Jin K, et al. (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111:1843–1851

    PubMed  CAS  Google Scholar 

  • Suri C, Jones PF, et al. (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    PubMed  CAS  Google Scholar 

  • Taguchi A, Soma T, et al. (2004) Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 114:330–338

    PubMed  CAS  Google Scholar 

  • Takashima S, Kitakaze M, et al. (2002) Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci USA 99:3657–3662

    PubMed  CAS  Google Scholar 

  • Tan CC, Eckardt KU, et al. (1992) Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia. Am J Physiol 263:F474–F481

    PubMed  CAS  Google Scholar 

  • Thurston G, Rudge JS, et al. (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6:460–463

    PubMed  CAS  Google Scholar 

  • Tian H, McKnight SL (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82

    PubMed  CAS  Google Scholar 

  • Tokunaga N, Nagaya N, et al. (2004) Adrenomedullin gene transfer induces therapeutic angiogenesis in a rabbit model of chronic hind limb ischemia: Benefits of a novel nonviral vector, gelatin. Circulation 109:526–531

    PubMed  CAS  Google Scholar 

  • Toth ZE, Leker RR, et al. (2008) The combination of granulocyte colony-stimulating factor and stem cell factor significantly increases the number of bone marrow-derived endothelial cells in brains of mice following cerebral ischemia. Blood 111:5544–5552

    PubMed  CAS  Google Scholar 

  • Tsuzuki N, Miyazawa T, et al. (2001) Hepatocyte growth factor reduces the infarct volume after transient focal cerebral ischemia in rats. Neurol Res 23:417–424

    PubMed  CAS  Google Scholar 

  • Tsuzuki N, Miyazawa T, et al. (2000) Hepatocyte growth factor reduces infarct volume after transient focal cerebral ischemia in rats. Acta Neurochir Suppl 76:311–316

    PubMed  CAS  Google Scholar 

  • van BN, Thibodeaux H, et al. (1999) VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 104:1613–1620

    Google Scholar 

  • Veltkamp R, Rajapakse N, et al. (2002) Transient focal ischemia increases endothelial nitric oxide synthase in cerebral blood vessels. Stroke 33:2704–2710

    PubMed  CAS  Google Scholar 

  • Villa P, van BJ, et al. (2007) Reduced functional deficits, neuroinflammation, and secondary tissue damage after treatment of stroke by nonerythropoietic erythropoietin derivatives. J Cereb Blood Flow Metab 27:552–563

    PubMed  CAS  Google Scholar 

  • Walter DH, Rittig K, et al. (2002) Statin therapy accelerates reendothelialization: A novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105:3017–3024

    PubMed  CAS  Google Scholar 

  • Wang L, Zhang Z, et al. (2004) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35:1732–1737

    PubMed  CAS  Google Scholar 

  • Wang Y, Kilic E, et al. (2005) VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena. Brain 128:52–63

    PubMed  Google Scholar 

  • Watanabe H, Ohashi K, et al. (2002) Sildenafil for primary and secondary pulmonary hypertension. Clin Pharmacol Ther 71:398–402

    PubMed  Google Scholar 

  • Weintraub MI (2006) Thrombolysis (tissue plasminogen activator) in stroke: A medicolegal quagmire. Stroke 37:1917–1922

    PubMed  Google Scholar 

  • Wiessner C, Gehrmann J, et al. (1993) Expression of transforming growth factor-beta 1 and interleukin-1 beta mRNA in rat brain following transient forebrain ischemia. Acta Neuropathol 86:439–446

    PubMed  CAS  Google Scholar 

  • Wislet-Gendebien S, Bruyere F, et al. (2004) Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4. BMC Neurosci 5:33–44

    PubMed  Google Scholar 

  • Wu H, Lee SH, et al. (1999) Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126:3597–3605

    PubMed  CAS  Google Scholar 

  • Xia CF, Yin H, et al. (2004) Kallikrein gene transfer protects against ischemic stroke by promoting glial cell migration and inhibiting apoptosis. Hypertension 43:452–459

    PubMed  CAS  Google Scholar 

  • Xia CF, Yin H, et al. (2006) Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther 17:206–219

    PubMed  CAS  Google Scholar 

  • Yamakawa K, Hosoi M, et al. (2000) Peroxisome proliferator-activated receptor-gamma agonists increase vascular endothelial growth factor expression in human vascular smooth muscle cells. Biochem Biophys Res Commun 271:571–574

    PubMed  CAS  Google Scholar 

  • Yamashita K, Gerken U, et al. (1999) Biphasic expression of TGF-beta1 mRNA in the rat brain following permanent occlusion of the middle cerebral artery. Brain Res 836:139–145

    PubMed  CAS  Google Scholar 

  • Yamashita T, Ninomiya M, et al. (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26:6627–6636

    PubMed  CAS  Google Scholar 

  • Yang EY, Moses HL (1990) Transforming growth factor beta 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol 111:731–741

    PubMed  CAS  Google Scholar 

  • Yanqing Z, Yu-Min L, et al. (2006) Fibronectin and neuroprotective effect of granulocyte colony-stimulating factor in focal cerebral ischemia. Brain Res 1098:161–169

    PubMed  Google Scholar 

  • Yao YY, Yin H, et al. (2008) Tissue kallikrein promotes neovascularization and improves cardiac function by the Akt-glycogen synthase kinase-3{beta} pathway. Cardiovasc Res

    Google Scholar 

  • Yip HK, Chang LT, et al. (2008) Level and value of circulating endothelial progenitor cells in patients after acute ischemic stroke. Stroke 39:69–74

    PubMed  Google Scholar 

  • Yue TL, Bao W, et al. (2005) Rosiglitazone treatment in Zucker diabetic Fatty rats is associated with ameliorated cardiac insulin resistance and protection from ischemia/reperfusion-induced myocardial injury. Diabetes 54:554–562

    PubMed  CAS  Google Scholar 

  • Zagzag D, Hooper A, et al. (1999) In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159:391–400

    PubMed  CAS  Google Scholar 

  • Zarnegar R (1995) Regulation of HGF and HGFR gene expression. EXS 74:33–49

    PubMed  CAS  Google Scholar 

  • Zhang F, Iadecola C (1993) Nitroprusside improves blood flow and reduces brain damage after focal ischemia. Neuroreport 4:559–562

    PubMed  CAS  Google Scholar 

  • Zhang F, Iadecola C (1994a) Reduction of focal cerebral ischemic damage by delayed treatment with nitric oxide donors. J Cereb Blood Flow Metab 14:574–580

    PubMed  CAS  Google Scholar 

  • Zhang F, White JG (1994b) Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia: Evidence that nitric oxide is beneficial in the early stages of cerebral ischemia. J Cereb Blood Flow Metab 14:217–226

    PubMed  CAS  Google Scholar 

  • Zhang L, Zhang RL, et al. (2005) Functional recovery in aged and young rats after embolic stroke: Treatment with a phosphodiesterase type 5 inhibitor. Stroke 36:847–852

    PubMed  Google Scholar 

  • Zhang L, Zhang Z, et al. (2006) Tadalafil, a long-acting type 5 phosphodiesterase isoenzyme inhibitor, improves neurological functional recovery in a rat model of embolic stroke. Brain Res 1118:192–198

    PubMed  CAS  Google Scholar 

  • Zhang R, Wang L, et al. (2003) Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ Res 92:308–313

    PubMed  CAS  Google Scholar 

  • Zhang Z, Chopp M. (2002a) Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia. Trends Cardiovasc Med 12:62–66

    PubMed  CAS  Google Scholar 

  • Zhang ZG, Chopp M, et al. (1999) Receptor tyrosine kinase tie 1 mRNA is upregulated on cerebral microvessels after embolic middle cerebral artery occlusion in rat. Brain Res 847:338–342

    PubMed  CAS  Google Scholar 

  • Zhang ZG, Tsang W, et al. (2001) Up-regulation of neuropilin-1 in neovasculature after focal cerebral ischemia in the adult rat. J Cereb Blood Flow Metab 21:541–549

    PubMed  Google Scholar 

  • Zhang ZG, Zhang L, et al. (2002b) Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience 113:683–687

    PubMed  CAS  Google Scholar 

  • Zhang ZG, Zhang L, et al. (2002c) Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 90:284–288

    PubMed  CAS  Google Scholar 

  • Zhang ZG, Zhang L, et al. (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106:829–838

    PubMed  CAS  Google Scholar 

  • Zhang ZG, Zhang L, et al. (2002d) Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab 22:379–392

    PubMed  CAS  Google Scholar 

  • Zhao LR, Duan WM, et al. (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174:11–20

    PubMed  Google Scholar 

  • Zhu Y, Lee C, et al. (2005) Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. Stroke 36:1533–1537

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Beck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Beck, H. (2010). Molecular Mechanisms of Post-Ischemic Angiogenesis in the Brain. In: Slevin, M. (eds) Therapeutic Angiogenesis for Vascular Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9495-7_6

Download citation

Publish with us

Policies and ethics