Skip to main content

Angiogenesis and Giant Cell Arteritis

  • Chapter
  • First Online:
Therapeutic Angiogenesis for Vascular Diseases

Abstract

Giant cell arteritis (GCA) is an autoimmune/inflammatory disease affecting older people. In GCA, inflammation of the wall of large or medium-sized arteries can cause stenosis (narrowing), or complete occlusion, of the lumen. The effects of the resulting end-organ ischaemia can include jaw claudication, transient visual loss, irreversible blindness, and stroke. The only established treatment at present is corticosteroids, which have significant adverse effects, particularly in the elderly. The diagnosis may be confirmed by biopsy of the temporal artery, which classically shows an inflammatory infiltrate in all layers of the vessel wall, with multinucleated giant cells and intimal hyperplasia. In such classical cases, angiogenesis is often observed on standard haematoxylin and eosin staining, but immunohistochemistry has demonstrated increased microvessel density even in lesions with limited intimal hyperplasia. Vascular endothelial growth factor production by the giant cells is reported to correlate with the number of microvessels present. Many other mediators known to be present in GCA also have an angiogenic effect, including platelet-derived growth factor, matrix metalloproteinases, interleukin-6 (IL-6), tissue growth factor beta and nitric oxide. In GCA temporal artery biopsies, angiogenesis often accompanies the most severe, stenosing lesions, but it is not clear whether the newly-formed microvessels promote further intimal hyperplasia, or whether they represent a compensatory response, acting to limit the hyperplasia. In patients with GCA, IL-6-induced angiogenesis has been postulated to improve perfusion of the ischaemic end-organs, perhaps reducing the frequency of ischaemic events. An improved understanding of the role of angiogenesis in GCA could suggest novel treatments that might reduce the burden of corticosteroid treatment for these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banks PM, Cohen MD, et al. (1983) Immunohistologic and cytochemical studies of temporal arteritis. Arthritis Rheum 26: 1201–1207.

    Article  PubMed  CAS  Google Scholar 

  • Barleon B, Sozzani S, et al. (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor Flt-1. Blood 87: 3336–3343.

    PubMed  CAS  Google Scholar 

  • Berger CT, Wolbers M, et al. (2009) High incidence of severe ischaemic complications in patients with giant cell arteritis irrespective of platelet count and size, and platelet inhibition. Rheumatology (Oxford) 48: 258–261.

    Article  CAS  Google Scholar 

  • Bergers G, Brekken R, et al. (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737–744.

    Article  PubMed  CAS  Google Scholar 

  • Borg FA, Dasgupta B (2009) Treatment and outcomes of large vessel arteritis. Best Pract Res Clin Rheumatol 23: 325–337.

    Article  PubMed  Google Scholar 

  • Borkowski A, Younge BR, et al. (2002) Reactive nitrogen intermediates in giant cell arteritis: Selective nitration of neocapillaries. Am J Pathol 161: 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Bruhl H, Vielhauer V, et al. (2005) Expression of DARC, CXCR3 and CCR5 in giant cell arteritis. Rheumatology (Oxford) 44: 309–313.

    Article  CAS  Google Scholar 

  • Carlson I, Tognazzi K, et al. (1997) Osteopontin is strongly expressed by histiocytes in granulomas of diverse etiology. Lab Invest 77: 103–108.

    PubMed  CAS  Google Scholar 

  • Carmeliet P et al. (2004) Manipulating angiogenesis in medicine. J Intern Med 255: 538–561.

    Article  PubMed  Google Scholar 

  • Chatelain D, Duhaut P, et al. (2009) Pathological features of temporal arteries in patients with giant cell arteritis presenting with permanent visual loss. Ann Rheum Dis 68: 84–88.

    Article  PubMed  CAS  Google Scholar 

  • Cid MC, Grant DS, et al. (1993) Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J Clin Invest 91: 977–985.

    Article  PubMed  CAS  Google Scholar 

  • Cid MC, Font C, et al. (1998) Association between strong inflammatory response and low risk of developing visual loss and other cranial ischemic complications in giant cell (Temporal) arteritis. Arthritis Rheum 41: 26–32.

    Article  PubMed  CAS  Google Scholar 

  • Cid MC, Cebrian M, et al. (2000) Cell adhesion molecules in the development of inflammatory infiltrates in giant cell arteritis: Inflammation-induced angiogenesis as the preferential site of leukocyte-endothelial cell interactions. Arthritis Rheum 43: 184–194.

    Article  PubMed  CAS  Google Scholar 

  • Cid MC, Hernandez-Rodriguez J, et al. (2002) Tissue and serum angiogenic activity is associated with low prevalence of ischemic complications in patients with giant-cell arteritis. Circulation 106: 1664–1671.

    Article  PubMed  Google Scholar 

  • Cid MC, Hoffman MP, et al. (2006) Association between increased CCL2 (MCP-1) expression in lesions and persistence of disease activity in giant-cell arteritis. Rheumatology (Oxford) 45: 1356–1363.

    Article  CAS  Google Scholar 

  • Compton MR (1959) The visual changes in temporal (Giant-Cell) arteritis. Brain 82: 377–390.

    Article  Google Scholar 

  • Costa C, Incio J, et al. (2007) Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis 10: 149–166.

    Article  PubMed  Google Scholar 

  • Cramer T, Yamanishi Y, et al. (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112: 645–657.

    Article  PubMed  CAS  Google Scholar 

  • Deng J, Ma-Krupa, et al. (2009) Toll-like receptors 4 and 5 induce distinct types of vasculitis. Circ Res 104: 488–495.

    Article  PubMed  CAS  Google Scholar 

  • Dvorak HF, Brown LF, et al. (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146: 1029–1039.

    PubMed  CAS  Google Scholar 

  • Ellingsen T, Elling P, et al. (2000) Monocyte chemoattractant protein 1 (MCP-1) in temporal arteritis and polymyalgia rheumatica. Ann Rheum Dis 59: 775–780.

    Article  PubMed  CAS  Google Scholar 

  • Fearon U, Griosios K, et al. (2003) Angiopoietins, growth factors, and vascular morphology in early arthritis. J Rheumatol 30: 260–268.

    PubMed  CAS  Google Scholar 

  • Foell D, Hernandez-Rodriguez J, et al. (2004) Early recruitment of phagocytes contributes to the vascular inflammation of giant cell arteritis. J Pathol 204: 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher P, Jones K (1982) Immunohistochemical findings in cranial arteritis. Arthritis Rheum 25: 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Garcia Vazquez JM, Carreira JM, et al. (1999) Superior and inferior limb ischaemia in giant cell arteritis: angiography follow-up. Clin Rheumatol 18: 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Gay MA, Blanco R, et al. (1998) Permanent visual loss and cerebrovascular accidents in giant cell arteritis: predictors and response to treatment. Arthritis Rheum 41: 1497–1504.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Gay MA, Garcia-Porrua C, et al. (2004a) Fever in biopsy-proven giant cell arteritis: clinical implications in a defined population. Arthritis Rheum 51: 652–655.

    Article  PubMed  Google Scholar 

  • Gonzalez-Gay MA, Pineiro A, et al. (2004b) Influence of traditional risk factors of atherosclerosis in the development of severe ischemic complications in giant cell arteritis. Medicine (Baltimore) 83: 342–347.

    Article  Google Scholar 

  • Gonzalez-Gay MA, Barros S, et al. (2005) Giant cell arteritis: disease patterns of clinical presentation in a series of 240 patients. Medicine (Baltimore) 84: 269–276.

    Article  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3: 23–35.

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsson M, Nordborg E, et al. (1993) Plasma viscosity in giant cell arteritis as a predictor of disease activity. Ann Rheum Dis 52: 104–109.

    Article  PubMed  CAS  Google Scholar 

  • Hayreh SS, Podhajsky PA, et al. (1998) Ocular manifestations of giant cell arteritis. Am J Ophthalmol 125: 509–520.

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Ziegelhoeffer T, et al. (2004) Collateral artery growth (Arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-Chemokine receptor-2. Circ Res 94: 671–677.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Rodriguez J, Segarra M, et al. (2003) Elevated production of interleukin-6 is associated with a lower incidence of disease-related ischemic events in patients with giant-cell arteritis: Angiogenic activity of interleukin-6 as a potential protective mechanism. Circulation 107: 2428–2434.

    Article  PubMed  CAS  Google Scholar 

  • Hoefer IE, van Royen N, et al. (2001) Time course of arteriogenesis following femoral artery occlusion in the rabbit. Cardiovasc Res 49: 609–617.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman GS, Cid MC, et al. (2007) Infliximab for maintenance of glucocorticosteroid-induced remission of giant cell arteritis: A randomized trial. Ann Intern Med 146: 621–630.

    PubMed  Google Scholar 

  • Horton BT (1962) Headache and intermittent claudication of the jaw in temporal arteritis. Headache 2: 29–40.

    Article  PubMed  CAS  Google Scholar 

  • Jackson JR, Seed MP, et al. (1997) The codependence of angiogenesis and chronic inflammation. FASEB J 11: 457–465.

    PubMed  CAS  Google Scholar 

  • Jones MK, Tsugawa K, et al. (2004) Dual actions of nitric oxide on angiogenesis: Possible roles of PKC, ERK, and AP-1. Biochem Biophys Res Commun 318: 520–528.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser M, Weyand CM, et al. (1998a) Platelet-derived growth factor, intimal hyperplasia, and ischemic complications in giant cell arteritis. Arthritis Rheum 41: 623–633.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser M, Weyand CM, et al. (1998b) Platelet-derived growth factor, intimal hyperplasia, and ischemic complications in giant cell arteritis. Arthritis Rheum 41: 623–633.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser M, Younge B, et al. (1999) Formation of new vasa vasorum in vasculitis. Production of angiogenic cytokines by multinucleated giant cells. Am J Pathol 155: 765–774.

    Article  PubMed  CAS  Google Scholar 

  • Karshovska E, Zernecke A, et al. (2007) Expression of HIF-1alpha in injured arteries controls SDF-1alpha mediated neointima formation in apolipoprotein E deficient mice. Arterioscler Thromb Vasc Biol 27: 2540–2547.

    Article  PubMed  CAS  Google Scholar 

  • Khurana R, Zhuang Z, et al. (2004) Angiogenesis-dependent and independent phases of intimal hyperplasia. Circulation 110: 2436–2443.

    Article  PubMed  Google Scholar 

  • Kim DH, Lee, NY, et al. (2008) Vascular endothelial growth factor gene polymorphisms may predict the risk of acute graft-versus-host disease following allogeneic transplantation: Preventive effect of vascular endothelial growth factor gene on acute graft-versus-host disease. Biol Blood Marrow Transplant 14: 1408–1416.

    Article  PubMed  CAS  Google Scholar 

  • Knecht S, Henningsen H, et al. (1991) Immunohistology of temporal arteritis: Phenotyping of infiltrating cells and deposits of complement components. J Neurol 238: 181–182.

    Article  PubMed  CAS  Google Scholar 

  • Krupa WM, Dewan M, et al. (2002) Trapping of misdirected dendritic cells in the granulomatous lesions of giant cell arteritis. Am J Pathol 161: 1815–1823.

    Article  PubMed  CAS  Google Scholar 

  • Larcher F, Murillas R, et al. (1998) VEGF/VPF Overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene 17: 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Lavignac C, Jauberteau-Marchan MO, et al. (1996) [Immunohistochemical Study of lesions in horton’s temporal arteritis before and during corticotherapy]. Rev Med Interne 17: 814–820.

    Article  PubMed  CAS  Google Scholar 

  • Lee MS, Smith SD, et al. (2006) Antiplatelet and anticoagulant therapy in patients with giant cell arteritis. Arthritis Rheum 54: 3306–3309.

    Article  PubMed  Google Scholar 

  • Lie JT (1990) Illustrated histopathologic classification criteria for selected vasculitis syndromes. american college of rheumatology subcommittee on classification of vasculitis. Arthritis Rheum 33: 1074–1087.

    Article  PubMed  CAS  Google Scholar 

  • Liozon E, Herrmann F, et al. (2001) Risk factors for visual loss in giant cell (Temporal) arteritis: A Prospective study of 174 patients. Am J Med 111: 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Mehrad B, Keane MP, Strieter RM (2007) Chemokines as mediators of angiogenesis. Thromb Haemost 97: 755–762.

    PubMed  CAS  Google Scholar 

  • Milkiewicz M, Ispanovic E, et al. (2006) Regulators of angiogenesis and strategies for their therapeutic manipulation. Int J Biochem Cell Biol 38: 333–357.

    Article  PubMed  CAS  Google Scholar 

  • Nackman GB, Karkowski FJ, et al. (1997) Elastin degradation products induce adventitial angiogenesis in the anidjar/dobrin rat aneurysm model. Surgery 122: 39–44.

    Article  PubMed  CAS  Google Scholar 

  • Nagy JA, Feng D, et al. (2006) Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Lab Invest 86: 767–780.

    PubMed  CAS  Google Scholar 

  • Narvaez J, Bernad B, et al. (2008) Impact of antiplatelet therapy in the development of severe ischemic complications and in the outcome of patients with giant cell arteritis. Clin Exp Rheumatol 26: S57–S62.

    PubMed  CAS  Google Scholar 

  • Nelimarkka L, Salminen H, et al. (2001) Decorin is produced by capillary endothelial cells in inflammation-associated angiogenesis. Am J Pathol 158: 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Nesher G, Berkun Y, et al. (2004) Low-dose aspirin and prevention of cranial ischemic complications in giant cell arteritis. Arthritis Rheum 50: 1332–1337.

    Article  PubMed  CAS  Google Scholar 

  • Nikkari ST, Hoyhtya M, et al. (1996) Macrophages contain 92-Kd gelatinase (MMP-9) at the site of degenerated internal elastic lamina in temporal arteritis. Am J Pathol 149: 1427–1433.

    PubMed  Google Scholar 

  • Nordborg C, Larsson K, et al. (2006) Stereological study of neovascularization in temporal arteritis. J Rheumatol 33: 2020–2025.

    PubMed  Google Scholar 

  • Park JR, Hazleman BL (1978) Immunological and histological study of temporal arteries. Ann Rheum Dis 37: 238–243.

    Article  PubMed  CAS  Google Scholar 

  • Park JR, Jones JG, et al. (1981) Relationship of the erythrocyte sedimentation rate to acute phase proteins in polymyalgia rheumatica and giant cell arteritis. Ann Rheum Dis 40: 493–495.

    Article  PubMed  CAS  Google Scholar 

  • Pieringer H, Biesenbach G, et al. (2008) Comment on: Statin therapy does not seem to benefit giant cell arteritis. Semin. Arthritis Rheum 38: 63–64.

    Article  Google Scholar 

  • Piggott K, Biousse V, et al. (2009) Vascular damage in giant cell arteritis. Autoimmunity 1

    Google Scholar 

  • Proven A, Gabriel SE, et al. (2003) Glucocorticoid therapy in giant cell arteritis: Duration and adverse outcomes. Arthritis Rheum 49: 703–708.

    Article  PubMed  CAS  Google Scholar 

  • Rittner HL, Kaiser M, et al. (1999a) Tissue-Destructive macrophages in giant cell arteritis. Circ Res 84: 1050–1058.

    Article  PubMed  CAS  Google Scholar 

  • Rittner HL, Hafner V, et al. (1999b) Aldose reductase functions as a detoxification system for lipid peroxidation products in vasculitis. J Clin Invest. 103: 1007–1013.

    Article  PubMed  CAS  Google Scholar 

  • Roberts DD, Isenberg JS, et al. (2007) Nitric Oxide and Its Gatekeeper thrombospondin-1 in tumor angiogenesis. Clin Cancer Res. 13: 795–798.

    Article  PubMed  CAS  Google Scholar 

  • Roche NE, Fulbright JW, et al. (1993) Correlation of interleukin-6 production and disease activity in polymyalgia rheumatica and giant cell arteritis. Arthritis Rheum. 36: 1286–1294.

    Article  PubMed  CAS  Google Scholar 

  • Rueda B, Lopez-Nevot MA, et al. (2005) A functional variant of vascular endothelial growth factor is associated with severe ischemic complications in giant cell arteritis. J Rheumatol. 32: 1737–1741.

    PubMed  CAS  Google Scholar 

  • Scappaticci FA, Skillings JR, et al. (2007) Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst. 99: 1232–1239.

    Article  PubMed  Google Scholar 

  • Segarra M, Garcia-Martinez A, et al. (2007) Gelatinase expression and proteolytic activity in giant-cell arteritis. Ann Rheum Dis. 66: 1429–1435.

    Article  PubMed  CAS  Google Scholar 

  • Shibuya M, et al. (2008) Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep. 41: 278–286.

    Article  PubMed  CAS  Google Scholar 

  • Shinriki S, Jono H, et al. (2009) Humanized anti-interleukin-6 receptor antibody suppresses tumor angiogenesis and in vivo growth of human oral squamous cell carcinoma. Clin Cancer Res. 15: 5426–5434.

    Article  PubMed  CAS  Google Scholar 

  • Sluimer JC, Daemen MJ (2009) Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol. 218: 7–29.

    Article  PubMed  Google Scholar 

  • Smeeth L, Cook C, et al. (2006) Incidence of diagnosed polymyalgia rheumatica and temporal arteritis in the united kingdom, 1990–2001. Ann Rheum Dis. 65: 1093–1098.

    Article  PubMed  CAS  Google Scholar 

  • Szekanecz Z, Koch AE (2007) Mechanisms of disease: Angiogenesis in inflammatory diseases. Nat Clin Pract Rheumatol. 3: 635–643.

    Article  PubMed  CAS  Google Scholar 

  • Torres Filho IP, Leunig M, et al. (1994) Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc Natl Acad Sci USA. 91: 2081–2085.

    Article  PubMed  CAS  Google Scholar 

  • van Hinsbergh VW, Engelse MA, et al. (2006) Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol. 26: 716–728.

    Article  PubMed  Google Scholar 

  • Wagner AD, Goronzy JJ, et al. (1994) Functional profile of tissue-infiltrating and circulating CD68+ Cells in giant cell arteritis. evidence for two components of the disease. J Clin Invest. 94: 1134–1140.

    Article  PubMed  CAS  Google Scholar 

  • Wagner AD, Bjornsson J, et al. (1996) Interferon-gamma-producing T cells in giant cell vasculitis represent a minority of tissue-infiltrating cells and are located distant from the site of pathology. Am J Pathol. 148: 1925–1933.

    PubMed  CAS  Google Scholar 

  • Wagner DD, Burger PC (2003) Platelets in inflammation and thrombosis. Arterioscler. Thromb Vasc Biol. 23: 2131–2137.

    Article  CAS  Google Scholar 

  • Weber C (2005) Platelets and chemokines in atherosclerosis: Partners in Crime Circ Res. 96: 612–616.

    Article  CAS  Google Scholar 

  • Weyand CM, Wagner AD, et al. (1996) Correlation of the topographical arrangement and the functional pattern of tissue-infiltrating macrophages in giant cell arteritis. J Clin Invest. 98: 1642–1649.

    Article  PubMed  Google Scholar 

  • Weyand CM, Tetzlaff N, et al. (1997) Disease patterns and tissue cytokine profiles in giant cell arteritis. Arthritis Rheum. 40: 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Weyand CM, Goronzy JJ (1999) Arterial wall injury in giant cell arteritis. Arthritis Rheum. 42: 844–853.

    Article  PubMed  CAS  Google Scholar 

  • Weyand CM, Fulbright JW, et al. (1999) Corticosteroid requirements in polymyalgia rheumatica. Arch Intern. Med. 159: 577–584.

    Article  PubMed  CAS  Google Scholar 

  • Weyand CM, Fulbright JW, et al. (2000) Treatment of giant cell arteritis: Interleukin-6 as a biologic marker of disease activity. Arthritis Rheum. 43: 1041–1048.

    Article  PubMed  CAS  Google Scholar 

  • Weyand CM, Ma-Krupa W, et al. (2004a) Immunopathways in giant cell arteritis and polymyalgia rheumatica. Autoimmun Rev. 3: 46–53.

    Article  PubMed  Google Scholar 

  • Weyand CM, Ma-Krupa W, et al. (2004b) Immunopathways in giant cell arteritis and polymyalgia rheumatica. Autoimmun Rev. 3: 46–53.

    Article  PubMed  Google Scholar 

  • Wilkinson IM, Russell RW (1972) Arteries of the Head and neck in giant cell arteritis. A pathological study to show the pattern of arterial involvement. Arch Neurol. 27: 378–391.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Mackie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mackie, S.L., Morgan, A.W., Jones, P.F. (2010). Angiogenesis and Giant Cell Arteritis. In: Slevin, M. (eds) Therapeutic Angiogenesis for Vascular Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9495-7_17

Download citation

Publish with us

Policies and ethics