Skip to main content

Persistent Screw Systems

  • Conference paper
  • First Online:
Advances in Robot Kinematics: Motion in Man and Machine

Abstract

In 1978, Hunt found a set of vector subspaces of screws that guarantee ‘full-cycle mobility’ of linkages and exhibit remarkable properties. They are subalgebras of the Lie algebra se(3) of the Euclidean group and they are at the basis of most families of mechanisms with special motion capabilities. This paper proves the existence of screw systems that, though not being subalgebras of se(3), still exhibit important properties for full-cycle motions, namely the invariance of both the space dimension and the pitch of the principal screws. Such systems are named persistent and they are believed to play an important role in both mobility analysis and mechanism synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Khatib. Dynamic control of manipulators in operational space. In Sixth CISM-IFToMM Congress on Theory of Machines and Mechanisms, pp. 1128–1131 (1983).

    Google Scholar 

  2. P. Baerlocher and R. Boulic. An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. Visual Computer, 20(6), 402–417 (2004).

    Article  Google Scholar 

  3. L. Sentis. Synthesis and control of whole-body behaviors in humanoid systems. PhD thesis, Stanford University (2007).

    Google Scholar 

  4. Jaeheung Park. Control strategies for robots in contact. PhD thesis, Stanford University (2006).

    Google Scholar 

  5. Ph. Sardain and G. Bessonnet. Forces acting on a biped robot. Center of pressure – zero moment point. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 34(5), 630–637 (2004).

    Article  Google Scholar 

  6. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa. Biped walking pattern generation by using preview control of zero-moment point. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan (2003).

    Google Scholar 

  7. K. Harada, H. Hirukawa, F. Kanehiro, K. Fujiwara, K. Kaneko, S. Kajita, and M. Nakamura. Dynamical balance of a humanoid robot grasping an environment. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 1167–1173 (2004).

    Google Scholar 

  8. P.-B. Wieber. Constrained dynamics and parametrized control in biped walking. In Proceedings International Symposium on Mathematical Theory of Networks and Systems, Perpignan (2000).

    Google Scholar 

  9. P.-B. Wieber. On the stability of walking systems. In Proceedings International Workshop on Humanoid and Human Friendly Robotics (2002).

    Google Scholar 

  10. F.-T. Cheng, T.H. Chen, and Y.-Y. Sun. Efficient algorithm for resolving manipulator redundancy – The compact QP method. In Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, France (1992).

    Google Scholar 

  11. Y. Abe, M. da Silva, and J. Popovic. Multiobjective control with frictional contacts. In Proceedings Symposium on Computer Animation (SCA) (2007).

    Google Scholar 

  12. C. Collette, A. Micaelli, C. Andriot, and P. Lemerle. Dynamic balance control of humanoids for multiple grasps and non coplanar frictional contacts. In Proceedings of Humanoids ’07 (2007).

    Google Scholar 

  13. S. Barthélemy, P. Bidaud, and A. Micaeli. Contrôle de l’équilibre des humains virtuels, chapter 2. École des Mines de Paris (2009).

    Google Scholar 

  14. G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori. The iCub humanoid robot: an open platform for research in embodied cognition. In Permis: Performance Metrics for Intelligent Systems Workshop, Washington DC, USA, August (2008).

    Google Scholar 

  15. J. Yuan. Closed-loop manipulator control using quaternion feedback. IEEE Journal of Robotics and Automation, 4(4), 434–440 (1988).

    Article  Google Scholar 

  16. S. Barthélemy and A. Micaelli. Arboris for Matlab.

    Google Scholar 

  17. J. Löfberg. Yalmip: A toolbox for modeling and optimization in MATLAB. In Proceedings of the CACSD Conference, Taipei, Taiwan (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Carricato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Carricato, M., Martínez, J.M.R. (2010). Persistent Screw Systems. In: Lenarcic, J., Stanisic, M. (eds) Advances in Robot Kinematics: Motion in Man and Machine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9262-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9262-5_20

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9261-8

  • Online ISBN: 978-90-481-9262-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics