Skip to main content

Multiple-Point Kinematic Control of a Humanoid Robot

  • Conference paper
  • First Online:
Advances in Robot Kinematics: Motion in Man and Machine

Abstract

Robots designed to operate in everyday domains have to move in environments designed for the humans. Therefore, they will often have a humanoid kinematic structure. Simple and efficient kinematic models are needed for motion control of this class of robots. An algorithm is presented to solve the inverse kinematics problem in the presence of a number of control points arbitrarily located on the whole robot body, using an augmented Jacobian approach and including posture control. Simulation experiments are reported, showing the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: system overview and integration. In Proceedings 2002 IEEE/RSJ International Conference on Intelligent Robots and System, Lausanne, Switzerland (2002).

    Google Scholar 

  2. Kaneko, K., Kanehiro, F., Kajita, S., Yokoyama, K., Akachi, K., Kawasaki, T., Ota, S., Isozumi, T.: Design of prototype humanoid robotics platform for HRP. In Proceedings 2002 IEEE/RSJ International Conference on Intelligent Robots and System, Lausanne, Switzerland (2002).

    Google Scholar 

  3. Iwata, H., Sugano, S.: Design of human symbiotic robot TWENDY-ONE. In Proceedings 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan (2009).

    Google Scholar 

  4. Siciliano, B., Khatib, O. (Eds.): Springer Handbook of Robotics. Springer, Heidelberg (2008).

    MATH  Google Scholar 

  5. Robins, B., Dautenhahn, K., Boekhorst, T., Billard, A.: Robotic assistants in therapy and education of children with autism: Can a small humanoid robot help encourage social interaction skills? Univers. Access Inf. Soc., 4(2), 105–120 (2005).

    Article  Google Scholar 

  6. Di Gironimo, G., Lanzotti, A.: Designing in VR. International Journal on Interactive Design and Manufacturing, 3(2), 51–53 (2009).

    Article  Google Scholar 

  7. Caputo, F., Di Gironimo, G., Marzano, A.: Ergonomic optimization of a manufacturing system work cell in a virtual environment. Acta Polytechnica, 46(5), 21–27 (2006).

    Google Scholar 

  8. Caputo, F., Di Gironimo, G., Papa, S.: A Virtual reality system for ergonomics and usability validation of equipment controls. Anales de Ingegneria Gráfica, 18, 47–64 (2006).

    Google Scholar 

  9. Di Gironimo, G., Patalano, S.: Re-design of a railway locomotive in virtual environment for ergonomic requirements. International Journal on Interactive Design and Manufacturing, 2(1), 47–57 (2008).

    Article  Google Scholar 

  10. De Santis, A., Pierro, P., Siciliano B.: The virtual end-effectors approach for human-robot interaction. In Proceedings 10th International Symposium on Advances in Robot Kinematics, Ljubljana, Slovenia (2006).

    Google Scholar 

  11. De Santis, A., Albu-Schaeffer, A., Ott, C., Siciliano, B., Hirzinger, G.: The skeleton algorithm for self-collision avoidance of a humanoid manipulators. In Proceedings 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Zürich, Switzerland (2007).

    Google Scholar 

  12. De Santis, A., Siciliano, B.: Inverse kinematics of robot manipulators with multiple moving control points. In Proceedings 11th International Symposium on Advances in Robot Kinematics, Batz-sur-Mer, France (2008).

    Google Scholar 

  13. Yamane, K.: Simulating and Generating Motions of Human Figures. Springer, Heidelberg (2004).

    MATH  Google Scholar 

  14. Siciliano, B., Sciavicco, L., Villani, L, Oriolo, G.: Robotics: Modelling, Planning and Control. Springer, London (2009).

    Google Scholar 

  15. Nakamura, Y.: Advanced Robotics: Redundancy and Optimization. Addison-Wesley, Reading, MA (1991).

    Google Scholar 

  16. Siciliano, B., Slotine, J.J. E.: A general framework for managing multiple tasks in highly redundant robotic systems. In Proceedings 5th International Conference on Advanced Robotics, Pisa, Italy (1991).

    Google Scholar 

  17. Magnenat-Thalmann, N., Thalmann, D.: Modelling and Motion Capture Techniques for Virtual Environments. Springer Verlag (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Siciliano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

De Santis, A., Di Gironimo, G., Pelliccia, L., Siciliano, B., Tarallo, A. (2010). Multiple-Point Kinematic Control of a Humanoid Robot. In: Lenarcic, J., Stanisic, M. (eds) Advances in Robot Kinematics: Motion in Man and Machine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9262-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9262-5_17

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9261-8

  • Online ISBN: 978-90-481-9262-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics