Skip to main content

General Aspects of Organocatalytic Cyclizations

  • Chapter
  • First Online:
Enantioselective Organocatalyzed Reactions II

Abstract

Ring-forming reactions are an essential part of synthetic chemistry and allow access to a range of useful natural products and biologically important molecules. The applications of organocatalysis to the synthesis of functionalised, enantiopure structures really begins where organocatalysis itself begins; with the Hajos-Parrish reaction in the 1970s for the synthesis of steroids using proline. This chapter then will review the uses of organocatalysts in cyclization methodology – from the initial Hajos-Parrish discovery to current advances in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Baldwin JE (1976) J Chem Soc Chem Comm 734; (b) Baldwin JE, Cutting J, Dupont W, Kruse L, Silberman L, Thomas RC (1976) J Chem Soc Chem Comm 736; (c) Baldwin JE, Kruse LI (1977) J Chem Soc Chem Comm 233; (d) Baldwin JE, Lusch MJ (1982) Tetrahedron 38:2939

    Google Scholar 

  2. Zampella A, D’Auria MV, Minale L, Debitus C, Roussakis C (1996) J Am Chem Soc 118:11085

    Article  CAS  Google Scholar 

  3. Papageorgiou CD, Ley SV, Gaunt MJ (2003) Angew Chem Int Ed 42:828

    Article  CAS  Google Scholar 

  4. Bremeyer N, Smith SC, Ley SV, Gaunt MJ (2004) Angew Chem Int Ed 43:2681

    Article  CAS  Google Scholar 

  5. Papageorgiou CD, de Dios MA Cubillo, Ley SV, Gaunt MJ (2004) Angew Chem Int Ed 43:4641

    Article  CAS  Google Scholar 

  6. Kunz RK, MacMillan DWC (2005) J Am Chem Soc 127:3240

    Article  CAS  Google Scholar 

  7. Xie H, Zu L, Li H, Wang J, Wang W (2007) J Am Chem Soc 129:10886

    Article  CAS  Google Scholar 

  8. Xuan Y-N, Nie S-Z, Dong L-T, Zhang J-M, Yan M (2009) Org Lett 11:1583

    Article  CAS  Google Scholar 

  9. (a) Wynberg H, Staring EGJ (1982) J Am Chem Soc 104:166; (b) Wynberg H, Staring EGJ (1985) J Org Chem 50:1977

    Google Scholar 

  10. Cortez GS, Tennyson RL, Romo D (2001) J Am Chem Soc 123:7945

    Article  CAS  Google Scholar 

  11. Hodous BL, Fu GC (2002) J Am Chem Soc 124:1578

    Article  CAS  Google Scholar 

  12. (a) Hajos ZG, Parrish DR (1971) German Patent DE 2102623; (b) Hajos ZG, Parrish DR (1974) J Org Chem 39:1615

    Google Scholar 

  13. Eder U, Sauer G, Wiechert R (1971) Angew Chem Int Ed 10:496

    Article  CAS  Google Scholar 

  14. Clemente FR, Houk KN (2004) Angew Chem Int Ed 43:5766

    Article  CAS  Google Scholar 

  15. Shigehisa H, Mizutani T, Tosaki S-y, Ohshima T, Shibasaki M (2005) Tetrahedron 61:5057

    Article  CAS  Google Scholar 

  16. List B, Lerner RA, Barbas CF (2000) J Am Chem Soc 122:2395

    Article  CAS  Google Scholar 

  17. Pidathala C, Hoang L, Vignola N (2003) Angew Chem Int Ed 42:2785

    Article  CAS  Google Scholar 

  18. (a) Cobb AJA, Shaw DM, Ley SV (2004) Synlett 558; (b) Hartikka A, Arvidsson PI (2004) Tetrahedron: Asymm 15:1831; (c) Torii H, Nakadai M, Ishihara K, Saito S, Yamamoto H (2004) Angew Chem Int Ed 43:1983

    Google Scholar 

  19. Enders D, Niemeier O, Leo S (2006) Synlett 3399

    Article  Google Scholar 

  20. Itagaki N, Kimura M, Sugahara T, Iwabuchi Y (2005) Org Lett 7:4185

    Article  CAS  Google Scholar 

  21. Frisch K, Landa A, Saaby S, Jorgensen KA (2005) Angew Chem Int Ed 44:6058

    Article  CAS  Google Scholar 

  22. (a) Hechavarria MT, List B (2004) Angew Chem Int Ed 43:3958; For a related study see (b) Kikuchi M, Inagaki T, Nishiyama H (2007) Synlett 1075

    Google Scholar 

  23. Mangion IK, MacMillan DWC (2005) J Am Chem Soc 127:3696

    Article  CAS  Google Scholar 

  24. (a) Hayashi Y, Gotoh H, Tamura T, Yamaguchi H, Masui R, Shoji M (2005) J Am Chem Soc 127:16028

    Google Scholar 

  25. Fustero S, Jiménez D, Moscardó J, Catalán S, del Pozo C (2007) Org Lett 9:5283

    Article  CAS  Google Scholar 

  26. A related protocol has been described by Carlson EC, Rathbone LK, Collett ND, Carter RG (2008) J Org Chem 73:5155

    Google Scholar 

  27. Vignola N, List B (2004) J Am Chem Soc 126:450

    Article  CAS  Google Scholar 

  28. Fu A, List B, Thiel W (2006) J Org Chem 71:320

    Article  CAS  Google Scholar 

  29. Bihelovic F, Matovic R, Vulovic B, Saicic RN (2007) Org Lett 9:5063

    Article  CAS  Google Scholar 

  30. For the intermolecular version of this process, see Ibrahem I, Córdova A (2006) Angew Chem Int Ed 45:1952

    Google Scholar 

  31. For a useful review in combining transition metal catalysis and organocatalysis, see Shao Z, Zhang, H (2009) Chem Soc Rev 38:2745

    Google Scholar 

  32. Beeson TD, Mastracchio A, Hong J-B, Ashton K, MacMillan DW C (2007) Science 316:582

    Article  CAS  Google Scholar 

  33. Conrad JC, Kong J, Laforteza BN, MacMillan DWC (2009) J Am Chem Soc 131:11640

    Article  CAS  Google Scholar 

  34. For a contrasting report see Nicolaou KC, Reingruber R, Sarlah D, Bräse S (2009) J Am Chem Soc 131:2086

    Google Scholar 

  35. For a useful review see (a) Akiyama T (2007) Chem Rev 107:5744 which makes up a special issue on organocatalysis; (b) Connon SJ (2008) Chem Commun 2499

    Google Scholar 

  36. Taylor MS, Jacobsen EN (2004) J Am Chem Soc 126:10558

    Article  CAS  Google Scholar 

  37. Raheem IT, Thiara PS, Peterson EA, Jacobsen EN (2007) J Am Chem Soc 129:13404

    Article  CAS  Google Scholar 

  38. Kam T-S, Sim K-M (1998) Phytochemistry 47:145

    Article  CAS  Google Scholar 

  39. (a) Ciamician G, Plancher G (1896) Chem Ber 29:2475; (b) Jackson AH, Smith P (1968) Tetrahedron 24:2227

    Google Scholar 

  40. Seayad J, Seayad AM, List B (2006) J Am Chem Soc 128:1086

    Article  CAS  Google Scholar 

  41. Wanner MJ, van der Haas RNS, de Cuba KR, van Maarseveen JH, Hiemstra H (2007) Angew Chem Int Ed 46:7485

    Article  CAS  Google Scholar 

  42. Sewgobind NV, Wanner MJ, Ingemann S, de Gelder R, van Maarseveen JH, Hiemstra H (2008) J Org Chem 73:6405

    Article  CAS  Google Scholar 

  43. Muratore ME, Holloway CA, Pilling AW, Storer RI, Trevitt G, Dixon DJ (2009) J Am Chem Soc 131:10796

    Article  CAS  Google Scholar 

  44. Nodes WJ, Nutt DR, Chippindale AM, Cobb AJA (2009) J Am Chem Soc 131:16016

    Article  CAS  Google Scholar 

  45. (a) Gellman SH (1998) Acc Chem Res 31:173; (b) Horne WS, Gellman SH (2008) Acc Chem Res 41:1399

    Google Scholar 

  46. Chebib M, Johnston GAR (2000) J Med Chem 43:1427

    Article  CAS  Google Scholar 

  47. Marion N, Díez-González S, Nolan SP (2007) Angew Chem Int Ed 46:2988

    Article  CAS  Google Scholar 

  48. Enders D, Breuer K, Runsink J, Teles JJ (1996) Helv Chim Acta 79:1899

    Article  CAS  Google Scholar 

  49. (a) Kerr MS, de Alaniz JR, Rovis T (2002) J Am Chem Soc 124:10298; (b) de Alaniz JR, Kerr MS, Moore JL, Rovis T (2008) J Org Chem 73:2033; (c) de Alaniz JR, Rovis T (2009) Synlett 1189

    Google Scholar 

  50. Moore JL, Kerr MS, Rovis T (2006) Tetrahedron 62:11477

    Article  CAS  Google Scholar 

  51. Kerr MS, Rovis T (2004) J Am Chem Soc 126:8876

    Article  CAS  Google Scholar 

  52. (a) Hashimoto T, Maruoka K (2007) Chem Rev 107:5656; (b) Ooi T, Maruoka K (2007) Angew Chem Int Ed 46:4222; (c) Jew S-S, Park, H-G (2009) Chem Comm 7090

    Google Scholar 

  53. Bandini M, Eichholzer A, Monari M, Piccinelli F, Umani-Ronchi A (2007) Eur J Org Chem 2007:2917

    Article  Google Scholar 

  54. Bui T, Barbas CF (2000) Tetrahedron Lett 41:6951

    Article  CAS  Google Scholar 

  55. McGarraugh PG, Brenner SE (2009) Org Lett 11:5654

    Article  CAS  Google Scholar 

  56. Sun F-G, Huang X-L, Ye S (2009) J Org Chem 75:273

    Article  Google Scholar 

  57. Yang JW, Fonseca MTH, List B (2005) J Am Chem Soc 127:15036

    Article  CAS  Google Scholar 

  58. Enders D, Hüttl MRM, Grondal C, Raabe G (2006) Nature 441:861

    Article  CAS  Google Scholar 

  59. Wang Y, Han R-G, Zhao Y-L, Yang S, Xu P-F, Dixon DJ (2009) Angew Chem Int Ed 48:9834

    Article  CAS  Google Scholar 

  60. Córdova A, Notz W, Barbas CF (2001) J Org Chem 67:301

    Article  Google Scholar 

  61. Chowdari NS, Ramachary DB, Córdova A, Barbas CF (2002) Tetrahedron Lett 43:9471

    Article  Google Scholar 

  62. Yamamoto Y, Momiyama N, Yamamoto H (2004) J Am Chem Soc 126:5962

    Article  CAS  Google Scholar 

  63. Austin JF, Kim S-G, Sinz CJ, Xiao W-J, MacMillan DWC (2004) Proc Nat Acad Sci USA 101:5482

    Google Scholar 

  64. Jiang J, Yu J, Sun X-X, Rao Q-Q, Gong L-Z (2008) Angew Chem Int Ed 47:2458

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. André Cobb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cobb, A.J.A. (2011). General Aspects of Organocatalytic Cyclizations. In: Mahrwald, R. (eds) Enantioselective Organocatalyzed Reactions II. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3867-8_1

Download citation

Publish with us

Policies and ethics