Skip to main content

Relativistic Cosmology

  • Chapter
  • First Online:
Chemical Cosmology
  • 754 Accesses

Abstract

General relativity is widely accepted to have superseded Newton’s laws as a model of gravitational interaction. Assuming gravity to be the major factor that decides the geometrical arrangement of heavenly bodies, general relativity is clearly the best algorithm for cosmology. The theory of special relativity, which requires a four-dimensional space-time, is contained within the general theory, which in turn dictates non-Euclidean geometry of space-time. The minimum constraint on the topology, assumed for any cosmological model, is to be consistent with these principles of special and general relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In view of modern observations Gödel’s concerns appear less serious. Galaxies are now known to wander and even collide. There is hardly any reason why not to explore the alternative possibility.

References

  • Adler, R., M. Bazin & M. Schiffer. (1965): Introduction to General Relativity, McGraw–Hill, NY

    Google Scholar 

  • Bergmann, P.G. (1976): Introduction to the theory of relativity, Dover edition, NY.

    Google Scholar 

  • Birch, P. (1982): Is the Universe Rotating,?, Nature, 1982 (298) 451.

    Article  Google Scholar 

  • Boeyens, J.C.A. (1992): The Geometry of Quantum Events, Specul. Sci. and Techn., 1992 (15) 192-210.

    Google Scholar 

  • Boeyens, J.C.A. (2005): Number theory of nuclide abundance, 5th Int. Conf. Isotopes, 2005, Brussels; — & D.C. Levendis. (2008): Number Theory and the Periodicity of Matter, Springer.

    Google Scholar 

  • Boeyens, J.C.A. (2009): Commensurability in the solar system, Physics Essays, 2009 (22) 493-499.

    Google Scholar 

  • Boeyens, J.C.A. (2010): The universe in perspective, Physics Essays,

    Google Scholar 

  • Bransden, B.H. & C.J. Joachain (1983): Physics of atoms and molecules, Longmans, London.

    Google Scholar 

  • Capria, M.M. (2005): Physics Before and After Einstein, IOS Press, Amsterdam.

    Google Scholar 

  • Coxeter, H.S.M. (1989):Introduction to Geometry, 2nd ed., Wiley.

    Google Scholar 

  • Daigneault, A. (2001): Is the Universe Expanding?www.ams.org/notices/fea-daigneault.pdf- & A. Sangalli (2001): Einstein’s Static Universe: An Idea Whose Time has Come Back?, Notices of the AMS, January 2001, 9-16.

  • Flegg, H.G. (2001): From Geometry to Topology, 2001, Dover, NY. (Reprint of 1974, Crane & Russak edition.)

    Google Scholar 

  • Gödel, K. (1949): An Example of a New Type of Cosmological Solutions of Einstein’s Field Equations of Gravitation, Rev. Mod. Phys., 1949 (21)447-450.

    Google Scholar 

  • Jennings, G.A. (1994): Modern Geometry with Applications, Springer,N.Y.

    Book  Google Scholar 

  • Narlikar, J.V. (2002): An Introduction to Cosmology, 3rd ed., University Press, Cambridge.

    Google Scholar 

  • Nicoll, J.F. & I.E. Segal (1978): Statistical Scrutiny of the Phenomeno-logical Redshift-Distance Square Law, Ann. Phys., 1978 (113) 1-28.

    Google Scholar 

  • Pauli, W. (1958): Theory of Relativity, Translated from the German by G. Field, Dover edition, N.Y.

    Google Scholar 

  • Ponce de Leon, J. (1988): Cosmological models in Kaluza-Klein theory with variable rest mass, Gen. Rel. Grav., 1988 (20) 539-550.

    Article  Google Scholar 

  • Schrödinger, E. (1922): Uber eine bemerkenswerte Eigenschaft der Quantenbahnen eines einzelnen Elektrons, Z. Phys., 192 (12) 13-23.

    Google Scholar 

  • Segal, I.E. (1976): Mathematical Cosmology and Extragalactic Astronomy, 1976, Academic Press, NY.

    Google Scholar 

  • Segal, I.E. (1980): Time, Energy, Relativity and Cosmology, in B. Grüber & R.S. Millman (eds.), Symmetries in Science, Plenum, N.Y.

    Google Scholar 

  • Veblen,O. (1933): ProjektiveRelativitätstheorie,Springer-Verlag,Berlin.

    Google Scholar 

  • Veblen, O. & B. Hoffmann (1930): Projective Relativity, Phys. Rev.,1930 (36) 810–822.

    Google Scholar 

  • Wesson, P.S. (1999): Space-Time-Matter, 1999, World Scientific,Singapore.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan C. A. Boeyens .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Boeyens, J.C.A. (2010). Relativistic Cosmology. In: Chemical Cosmology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3828-9_7

Download citation

Publish with us

Policies and ethics