Skip to main content

Role of Mycorrhizal Fungi in Growth Promotion of Crop Plants

  • Chapter
Progress in Mycology

Abstract

Living organisms in the biosphere exhibit a number of interactions, which either alter their environment and/or the size, and composition of each other’s populations. Of these, perhaps the most striking relationship is ‘symbiosis’ in which the partners live in a state of physical and physiological equilibrium and derive benefit from each other. One such symbiotic association is the mycorrhiza.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Allen, M.F., T.S. Moore and M. Christensen (1980). Phytochrome changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increase in the host plant, Canadian Journal of Botany 58: 371–374.

    CAS  Google Scholar 

  • Allen, M.F., W.K. Smith, T.S. Moore and M. Christensen (1981). Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis (J.B.K) Lag ex steud, New Phytologist 88: 683–693.

    Google Scholar 

  • Allen, M.F (1982). Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (J.B.K.) Lag. Ex steud, New Phytologist 104: 559–571.

    Google Scholar 

  • Allen, M.F., T.S. Moore and M. Christensen (1982). Phytochrome changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberelin-like substances and abscisic acid in the host plant, Canadian Journal of Botany 60:468–471.

    CAS  Google Scholar 

  • Allen, E.B., M.F. Allen, D.J. Helm, J.M. Trappe, R. Molina and E. Rincon (1995). Pattern and regulation of mycorrhizal plants and fungal diversity, Plant soil 170: 47–62.

    CAS  Google Scholar 

  • Ames, R.N., C.P. Reid, L.K. Porter and C. Canbardella (1983). Hyphal uptake and transport of nitrogen from two 15N labeled sources by Glomus mosseae, a vesicular arbuscular mycorrhizal fungus, New Phytol 95: 381–96.

    Google Scholar 

  • Anderson, E.L., P.D. Millner and H.M. Kunishi (1987). Maize root length density and mycorrhizal infection as influenced by tillage and soil phosphorus, J. Plant Nutr 10: 1349–1356.

    CAS  Google Scholar 

  • Andrade, G., R.G. Linderman and G.J. Bethlenfalvay (1998). Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae, Plant Soil 202:79–87.

    CAS  Google Scholar 

  • Arines, J., A. Vilarino and M. Sainz (1989). Effect of soil pH and sewage sludge on VA mycorrhizal fungi on Mn uptake by red clover, Agriculture Ecosystem and Environment 29: 1–4.

    Google Scholar 

  • Arines, J and A. Ballester(1992). A mycorrhization of micropropagated Prunus avium L. plantlets. In micropropagation, root regeneration and mycorrhizas. Joint meeting between COST 87 and COST 8.10, Dijon, France, 45.

    Google Scholar 

  • Arines, J., J.M. Palma and A. Vilarino (1993). Comparison of protein patterns in non mycorrhizal and vesicular arbuscular mycorrhizal roots of red clover. New Phytologist 123: 763–768.

    CAS  Google Scholar 

  • Asimi, S., V. Gianinazzi-Pearson and S. Gianinazzi (1980). Influence of increasing soil phosphorus levels on interaction between vesicular arbuscular mycorrhiza and Rhizobium in soyabean, Canadian Journal of Botany 28: 2200–2205.

    Google Scholar 

  • Atkinson, D., G. Berta and J.E. Hooker (1994). Impact of mycorrhizal colonization on the root architecture, root longevity and the formation of growth regulators. In ‘Impact of Arbuscular mycorrhizas on sustainable agriculture and natural ecosy-stems’ (eds. Gianinazzi S and Schuepp H), Birkhauser Verlag, Basel, pp.89–100.

    Google Scholar 

  • Azcon, T and J.A. Ocampo (1981). Factors affecting the vesicular arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytologist 87: 677–685.

    CAS  Google Scholar 

  • Azcon-Aguilar, C., A. Barcelo, M.T. Vidal and G. De La Vina (1992). Further studies on the growth and development of micropropagated Avocado plants, Agronomie 12:837–840.

    Google Scholar 

  • Azcon-Aguilar, C., M. Cantos, A. Troncoso and J.M. Barea (1994). Effect of arbuscular mycorrhizae on growth and development of Annona cherimola micropropagated plants, Agric. Sci. Finl 3: 281–288.

    Google Scholar 

  • Azcon-Aguilar, C., I.C. Padilla, C.L. Encina, R. Azcon and J.M. Barea (1996). Mycorrhizal inoculation (Glomus deserticola) enhances plant growth and changes root system morphology in micropropagated Annona cherimola Mill. In: Novel biotechnological approaches to plant production: from sterile root to mycorrhizosphere. Joint COST meeting 8.21, Pisa, Italy, 21.

    Google Scholar 

  • Azcon-Aguilar, C and J.M. Barea (1997). Arbuscular mycorrhizas and biological control of soil born plant pathogens-An overview of the mechanisms involved. Mycorrihza, 6: 457–464.

    Google Scholar 

  • Bagyaraj, D.J., A. Manjunath and D.D.R. Reddy (1979). Interaction of vesicular arbuscular with root knot nematodes in tomato, Plant and Soil 51: 397–403.

    Google Scholar 

  • Bagyaraj, D.J and K.R. Screeramulu (1982). Preinoculation with YA mycorrhiza improves growth and yield of chilli transplanted in the field and saves phosphatic fertilizer, Plant Soil 69: 375.

    CAS  Google Scholar 

  • Bagyaraj, D.J and A. Varma (1995). Interaction between arbuscular mycorrhizal fungi and plants, and their importance in sustainable agriculture in arid and semi-arid tropics, Advances in Microbial Ecology 14: 119–142.

    Google Scholar 

  • Baker, K.F and R.J. Cook (1982). In: Biological control of plant pathogens. WH Freeman and Co., San Francisco, California, USA. pp 433.

    Google Scholar 

  • Barea, J.M and C. Azcon-Aguilar (1982). Production of plant growth regulating substances by the vesicular mycorrhizal fungus Glomus mosseae, Appl. and Environ. Microbiol 43: 810–913.

    CAS  Google Scholar 

  • Barea, J.M and C. Azcon-Aguilar (1983). Mycorrhizas and their significance in nodulating nitrogen fixing plants. Adv. Agron. 36:1–54.

    Google Scholar 

  • Barea, J.M., R. Azcon and C. Azcon-Aguilar (1983). In: 3rd Int. Congr. Phosphorus compounds, Brussels, pp. 127–144.

    Google Scholar 

  • Barea, J.M (1986). Importance of hormones and root exudates in mycorrhizal phenomena. In Physiological and genetical aspects of mycorrhizae (eds. Gianinazzi-Pearson, V and Gianinazzi, S) Paris: INRA, pp. 177–87.

    Google Scholar 

  • Becard, G and Y. Piche (1989). New aspects on the acquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus Gigaspora margarita, New Phytol 112: 77–83.

    Google Scholar 

  • Berch, S.M (1986). Endogonaceae: Taxonomy, specificity fossil record, phylogeny. In: ‘Frontiers in Applied Microbiology’ Vol. 2. (eds. Mukerji KG, Pathak NC and Singh VP), India Print House Lucknow, 161–186.

    Google Scholar 

  • Berta, G., S. Sgorbati, V. Solar, A. Fuscone, A. Trotta, A. Citerio, M.G. Bottone, E. Sparvoli and S. Scannerini (1990). Variation in chromatin structure in host cell nuclei of vesicular arbuscular mycorrhiza. New Phytologist 114: 199–205.

    Google Scholar 

  • Bethlenfalvay, G.J (1992). Mycorrhiza and crop productivity In: G.J Bethlenfalvay, R.G. Linderman (ed.), In: Mycorrhizae in sustainable agriculture. Soil Science Society of America. Madison, Wisconsin. ASA. Spec. Publication, pp. 1–27.

    Google Scholar 

  • Bever, J.D., J.B. Morton, J. Antonovics and P.A. Schultz (1996). Host dependant sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland, J. Ecol 84: 71–82.

    Google Scholar 

  • Beever, R.E., and D.J.W. Burns (1980). Phosphorus uptake, storage and utilization by fungi. Advances in Botanical Research 8: 128–219.

    Google Scholar 

  • Beyene, S., B. Ricken and W. Hofner (1996). Effects of arbuscular mycorrhizal fungus on dry matter yield, as well as P and K concentration in maize (Zea mays L.) at increasing levels of P supply. Angew. Bot 70: 194–198.

    Google Scholar 

  • Binet, M.N., M.C. Lemoine, C. Martin, C. Chambon and S. Gianinazzi (2007). Micro-propagation of olive (Olea europaea) and application of mycorrhiza to improve plantlet establishment, In Vitro Cellular and Developmental Biology-Plant 43(5): 473–478.

    CAS  Google Scholar 

  • Blair, D.A., R.L. Peterson and S.R. Bowley (1988). Nuclear DNA content in root cells of Lotus and Trifolium colonized by VAM fungus, Glomus versiforme, New Phytologist 109: 167–170.

    CAS  Google Scholar 

  • Blal, B., C. Morel, V. Gianinazzi-Pearson, J.C. Fardeau and S. Gianinazzi (1990). Influence of vesicular arbuscular mycorrhizae on phosphate fertilizer efficiency in two tropical acid soils planted with micropropagated oil palm (Elaeis guinensis Jacq.), Biol Fertl. Soils 9: 43–48.

    CAS  Google Scholar 

  • Blechert, O., G. Kost, A. Hassel, R.H. Rexer and A. Varma (1999). First remarks on the symbiotic interactions between Piriformospora indica and terrestrial orchid. In: Varma A and Hock B (eds.), Mycorrhizae, Second edition, Springer Verlag, Germany, pp 683–688.

    Google Scholar 

  • Bolgiano, N.C., G.R. Safir and D.D. Warncke (1983). Mycorrhizal infection and growth of onion in the field in relation to phosphorus and water availability, J. Amer. Soc. Hort. Sci 108: 819–825.

    CAS  Google Scholar 

  • Bonfante-Fasolo, P (1988). The role of the cell wall a signal in mycorrhizal associations, in cell to cell signal in plant, animal and microbial symbiosis. NATO ASI Ser., (eds. Scannerini S, Smith DG, Bonfante-Fasolo P and Gianinazzi-Pearson V), Springer-Verlag, Berlin, pp. 219.

    Google Scholar 

  • Bouhired, L., S. Gianinazzi and V. Gianinazzi-Pearson (1992). Influence of endomycorrhizal inoculation on the growth of Phoenix dactylifera. In: Micropropagation, root regeneration and mycorrhizas. Joint meeting between Cost 87 and Cost 8.10, Dijon, France. 53.

    Google Scholar 

  • Bowen, G.D (1980). Mycorrhizal roles in tropical plants and ecosystems. In ‘Tropical Mycorrhiza Research’ (ed. Mikola), Clarendon Press, Oxford, pp. 165–190.

    Google Scholar 

  • Branzati, B., V. Gianinazzi-Pearson and S. Gianinazzi(1992). Influence of phosphate fertilization on the growth and nutrient status of micropropagated apple infected with endomycorrhizal fungi during the weaning stage, Agronomiel 12: 841–846.

    Google Scholar 

  • Budi, S.W., C. Cordier, A. Trouvelot, V. Gianinazzi-Pearson, S. Gianinazzi, B. Blal and M.C. Lemonie (1998). Arbuscular mycorrhiza as a way of promoting sustainable growth of micropropagated plantlets. Symposium on plant biotechnology as a tool for the exploitation of mountain lands, 457: 71–77.

    Google Scholar 

  • Callow, J.A., L.C.M. Capacco, G. Parrish and P.B. Tinker (1978). Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhizas, New Phytologist 80: 125–134.

    CAS  Google Scholar 

  • Cambardella, C.A and E.T. Elliott (1992). Particulate soil organic matter across a grassland cultivation sequence. Soil Sci. Soc. Am. J 56: 777–783.

    Google Scholar 

  • Capaccio, L.C.M and J.A. Callow (1982). The enzymes of polyphosphate metabolism in vesicular-arbuscular mycorrhizas, New Phytologist 91: 81–97.

    CAS  Google Scholar 

  • Cazres, E. and J.M. Trappe (1993). Vesicular endophytes in roots of the Pinaceae, Mycorrhiza 2: 153–156.

    Google Scholar 

  • Clark, R.B. (1997). Arbuscular mycorrhizal adaptation, spore germination, root colonization and host plant growth and mineral acquisition at low pH. Plant Soil 192: 15–22.

    CAS  Google Scholar 

  • Cooper, K.M and P.B. Tinker (1978). Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. IV. Effect of environmental variables on movement of phosphorus, New Phytologist 88: 327–339.

    Google Scholar 

  • Cooper, K.M. (1984). Physiology of VA mycorrhizal associations. In: C.L. Powell, D.J. Bagyaraj (eds.), VA Mycorrhizas. CRC Press, Boca Raton, FL. pp. 155–186.

    Google Scholar 

  • Cooper, K.M. and G.S. Grandison (1986). Interaction of vesicular arbuscular mycorrhizal fungi and root-knot nematode on cultivars of tomato and white clover susceptible to Meloidogyne hapla. Annals Applied Biology 108: 555–565.

    Google Scholar 

  • Cordier, C., A. Trouvelot, S. Gianinazzi and V. Gianinazzi-Pearson (1996). Arbuscular mycorrhizal technology applied to micropropagated Prunus avium and to protection against Phytophthora cinnamoni, Agronomie 16: 679–688.

    Google Scholar 

  • Cox, G., K.J. Moran, F.E. Sanders, P.B. Tinker and J.A. Wild (1975). Ultra-structural evidence relating to host endophyte transfer in a vesicular-arbuscular mycorrhiza. In ‘Endomycorrhizas’. (eds. Sanders FE, Mosse B and Tinker PB), Academic Press, London and New York, pp. 297–312.

    Google Scholar 

  • Cox, G. and P.B. Tinker (1976). Translocation and transfer of nutrients in vesicular arbuscular mycorrhiza. I. The arbuscule and phosphorus transfer, a quantitative ultrastructural study, New Phytologist 77: 371–378.

    CAS  Google Scholar 

  • Cox, G., K.J. Moran, F.E. Sanders, C. Nockolds and P.B. Tinker (1980). Translocation and transfer of nutrients in vesicular arbuscular mycorrhiza. III. Polyphosphate granules and phosphorus translocation, New Phytologists 84: 649–659.

    CAS  Google Scholar 

  • Cress, W.A., G.O. Throneberry and D.L. Lindsey (1979). Kinetics of phosphorus absorption by mycorrhizal and non-mycorrhizal tomato roots, Plant Physiology 64: 484–487.

    CAS  PubMed  Google Scholar 

  • Da Silva, M:F., R. Pescador, R.A. Rebelo and S.L. Sturner (2008). The effect of arbuscular mycorrhizal fungi isolates on the development and oleresin production of micropropagated Zingiber officinale, Brazilian Journal of Plant Physiology 20(2): 119–30.

    Google Scholar 

  • Daft, M.J., E. Hacskaylo and T.M. Nicolson (1975). In: Endomycorrhizas, (eds. FC Sander, B. Moss, PB Tinker). London, Academic Press, pp. 581–92.

    Google Scholar 

  • Declerck, S., B. Devos, B. Devaux and C. Plenchette (1994). Growth response of micropropagated banana plants to VAM inoculation. Fruits, 49: 103–109.

    Google Scholar 

  • Dehne, H.W. and F. Schoenbeck (1978). Investigation on the influence of endotrophic mycorrhiza on the plant diseases. 3. Chitinase activity and ornithine cycle, Zeitschriftfur Pflanzenkrankheiten und Pflanzenschat, 85: 666–678.

    CAS  Google Scholar 

  • Dhillon, S.S. (1992). Evidence for host-mycorrhizal preference in native grassland species, Mycol. Res 96: 359–362.

    Google Scholar 

  • Dhillion, S.S. (1994). Effect of Trichoderma harzianum, Beijerinckia mobisis and Aspergillus niger on arbuscular mycorrhizal infection and sporulation in maize, wheat, millet, sorghum, barley and oats, J. Plant Dis. Protect 101: 272–277.

    CAS  Google Scholar 

  • Dolcet-Sanjuan, R., E. Claveria, A. Camprubi, V. Estaun and C. Calvet (1996). Micro-propagation of walnut trees (Juglans regia L.) and response to arbuscular mycorrhizal inoculation, Agronomie 16: 639–645.

    Google Scholar 

  • Donnelly, P.K., J.A. Entry and D.L. Crawford (1993). Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro, Applied and Environmental Microbiology 59: 2642–2647.

    CAS  PubMed  Google Scholar 

  • Douds, D.D., R.R. Janke and S.E. Peters (1993). VAM fungus spore population and colonization of roots of maize and soybean under conventional and low-input sustainable agriculture, Agric. Ecosyst. Environ 43: 325–335.

    Google Scholar 

  • Dumas, E., V. Gianinazzi-Pearson and S. Gianinazzi (1984). Production of new soluble proteins during VA endomycorrhiza formation, Agriculture Ecosystems Environment 29:111–114.

    Google Scholar 

  • Dumas-Gaudot, E., P. Guillaume, A. Tahiri-Alaui, V. Gianinazzi-Pearson and S. Gianinazzi (1989). Changes in polypeptide patterns in tobacco roots colonized by two Glomus species, Mycorrhiza 4: 215–221.

    Google Scholar 

  • Edriss, M.H., R.M. Davis and D.W. Burger (1984). Influence of mycorrhizal fungi on cytokinin production in sour orange, J. Am. Soc. Hortic. Sci, 109: 587–590.

    CAS  Google Scholar 

  • Elliott, A.P., G.W. Bird and G.R. Safir (1984). Joint influence of Pratylenchus penetrans (Nematode) and Glomus fasciculatum (Phycomycete) on the ontology of Phaseolus vulgaris. Nematropica 14: 111–119.

    Google Scholar 

  • Evans, D.G. and M.H. Miller (1988). Vesicular arbuscular mycorrhizas and the soil disturbance induced reduction of nutrient absorption in maize. I. Casual relationships, New Phytologist 110: 75–84.

    Google Scholar 

  • Evans, D.G. and M.H. Miller (1990). The role of external mycelial network in the effect of soil disturbance upon vesicular-arbuscular mycorrhizae colonization of maize, New Phytologist 114: 65–71.

    Google Scholar 

  • Fortuna, P., S. Citernesi, S. Morini, M. Giovannetti and F. Loreti (1992). Infectivity and effectiveness of different species of arbuscular mycorrhizal fungi in micropropagated plants of Mr S 2/5 plum rootstock, Agronomie 12: 825–830.

    Google Scholar 

  • Fracchia, S., M.T. Mujica, J.M. Garcia-Garrido, J. Martin, J.A. Ocampo and A. Godeas (1998). Interaction between Glomus mosseae and arbuscular mycorrhizal sporocarp-associated saprophytic fungi, Plant Soil 200: 131–137.

    CAS  Google Scholar 

  • Frank, A.B. (1885). Über die auf Wurzelsymbiose beruhende Ernahrung gewisser Baume durch Unterisdischr Pilze. Berichte Des Deutschen Botanischem Gersellschaft, 3:128–145.

    Google Scholar 

  • Frey, B and H. Schüepp (1992). Transfer of symbiotically fixed nitrogen from berseem (Trifolium alexandrium L.) to maize via vesicular arbuscular mycorrhizal hyphae, New Phytologist 122: 447–454.

    CAS  Google Scholar 

  • Frey, J.E. and J.R. Ellis (1997). Relationship of soil properties and soil amendments to response of Glomus intraradices and soybeans. Can. J. Bot 75: 483–491.

    Google Scholar 

  • Gange, A.C. and H.M. West (1994). Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytologist 128: 79–87.

    Google Scholar 

  • Gange, A.C. and R.L. Ayres (1999). On the relation between arbuscular mycorrhizal fungi in micropropagated plants of Mr S2/5 plum rootstock. Agronomie 12: 825–830.

    Google Scholar 

  • Gangopadhyay, S. and K.M. Das (1987). Control of soil borne diseases of rice through vesicular arbuscular mycorrhizae. In ‘Mycorrhizae round table’ (eds. Verma AK, Oka AK, Mukerji KG, Tilak KVBR and Janak Raj) IDRC and JNU, New Delhi, India, pp. 560–580.

    Google Scholar 

  • Garcia-Romera, I., J.M. Garcia-Garrido, J. Martin, S. Fracchia, M.T. Mujica, A. Godeas and J.A. Ocampo (1998). Interactions between saprotrophic Fusarium strains and arbuscular mycorrhizas of soybean plants, Symbiosis 24: 235–245.

    Google Scholar 

  • Garriock, M.L., R.L. Peterson and C.A. Ackerley (1989) Early stages in colonization of Allium porrumo (Peck) roots by the VAM fungus, Glomus versiforme, New Phytologist 112: 85.

    Google Scholar 

  • Gehring, C.A. and T.G. Whitham (1994). Interactions between above ground herbivores and the mycorrhizal mutualists of plants, Trends in Ecology and Evolution 9: 251–255.

    CAS  PubMed  Google Scholar 

  • George, E., K.U. Haussler, D. Vetterlein, E. Gorgus and H. Marschner (1992). Water and nutrient translocation by hyphae of Glomus mosseae. Canadian. Journal of Botany, 70:2130–37.

    Google Scholar 

  • Gerdemann, J.W. (1968). Vesicular-arbuscular mycorrhiza and plant growth, Annual Review of Phytopathology 6: 397–418.

    Google Scholar 

  • Gianinazzi-Pearson, V., J.C. Fordeau, S. Asimi and S. Gianinazzi (1981). Source of additional phosphorus absorbed from soil by vesicular arbuscular mycorrhizal soyabeans, Physiology Vegetable 19: 33–43.

    Google Scholar 

  • Gianinazzi-Pearson, V., B. Branzanti and S. Gianinazzi(1989). In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids, Symbiosis 7: 243–255.

    CAS  Google Scholar 

  • Gianinazzi-Pearson, V., S. Gianinazzi and N.J. Brewin (1990). Immunocytochemical localization of antigenic sites in the perisymbiotic membrane of vesicular-arbuscular endomycorrhiza using monoclonal antibodies reacting against the peribacteroid membrane of nodules. In ‘Endocytobiology IV’ (eds. Nardon P, Gianinazzi-Pearson V, Grenier AM, Margulis L and Smith DC), INRA, Paris. pp. 127–131.

    Google Scholar 

  • Giovannetti, M., D. Tosi, G. Dellatorre and A. Zazzserini (1991). Histological and biochemical interactions between vesicular-arbuscular mycorrhizae and Thielaviopsis basicola in tobacco plants, Journal of Phytopathology 131: 265–274.

    CAS  Google Scholar 

  • Giovannetti, M., L. Avio, C. Sbrana, A.S. Citernesi and C. Logi (1993b). Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages, New Phytologist 125: 587–594.

    Google Scholar 

  • Graham, J.H. and D.M. Eisenstat (1998). Field evidence for the carbon cost of citrus mycorrhizas, New Phytol 140: 103–110.

    Google Scholar 

  • Gribaudo, I., R. Zanelti, M.A. Morte, A. Previati and A. Schubert (1996). Development of mycorrhizal infection in in vitro and in vivo formed roots of woody fruit plants, Agronomie 16: 621–624.

    Google Scholar 

  • Guillemin, J.P., S. Gianinazzi and A. Trouvelot (1992). Screening of arbuscular mycorrhizal fungi for establishment of micropropagated pineapple plants. Agronomie 12: 831–836.

    Google Scholar 

  • Habte, M., S.C. Miyasaka and D.T. Matsuyama(2001). Arbuscular mycorrhizal fungi improve early forest tree establishment. In: W.J. Horst et al. (eds.). Plant nutrition-Food security and sustainability of agro-ecosystems. Kluwer Academic Publishers, Netherland, pp. 644–645.

    Google Scholar 

  • Harley, J.L. (1991). Introduction: The state of art. In ‘Methods in Microbiology’ (eds. Norris JR, Read DJ and Varma AK). Vol. 24, Academic Press, London, pp. 1–24.

    Google Scholar 

  • Harrison, M.S. and M.L. Van Buren (1995). A phosphate transporter from the mycorrhizal fungus Glomus versiforme, Nature 378: 626–629.

    CAS  PubMed  Google Scholar 

  • Hass, H., T.N. Taylor and W. Rimy (1994). Fungi from the lower Devonian Rhynia chert; Mycoparasitism, American Journal of Botany 81: 29–37.

    Google Scholar 

  • Hayman, D.S (1986). Mircen, J. Appl Microbiol. Biotechnol 2: 121-45.

    Google Scholar 

  • Heijden, M.G.A., J.N. Klironomos, M. Ursic, P. Moutoglis, R. Streitwolf-Engel, T. Boiler, A. Wiemken and I.R. Sanders (1998). Mycorrhizal fungal diversity determines plant bio-diversity, ecosystem variability and productivity, Nature 396: 69–72.

    Google Scholar 

  • Hetrick, B.A.D., G.W.T. Wilson and T.S. Cox (1993). Mycorrhizal dependence of modern wheat cultivars and ancestors — A synthesis, Can. J. Bot 71: 512–518.

    Google Scholar 

  • Ho, I and J.M. Trappe (1973). Translocation of 14C from Festuca plants to their endomycorrhizal fungi. Nature, London, 224: 30–31.

    Google Scholar 

  • Honrubia, M and M.A. Morte (1992). Mycorrhization of micropropagated plants of Tetraclinis articulata and Helianthemum almeriense. In: Micropropagation, root regeneration and mycorrhizas. Joint meeting between COST 87 and COST 8.10, Dijon, France. 44.

    Google Scholar 

  • Hussey, R.S and R.W. Roncadori (1982). Vesicular-arbuscular mycorrhizae may limit nematode activity and improve plant growth, Plant Disease 66: 9–14.

    Google Scholar 

  • Hwang, S.F (1992). Effects of vesicular-arbuscular mycorrhizal fungi on the development of Verticillium and Fusarium wilts of alfalfa, Plant Diseases 76: 239–243.

    Google Scholar 

  • Jaizme-Vega, M.C (1992). VAM inoculation of micropropagated banana plantlets (Musa acuminata Colla AAA). In: Micropropagation, root regeneration and mycorrhizas. Joint meeting between COST 87 and COST 8.10, Dijon, France. 44.

    Google Scholar 

  • Jakobsen, I., E.J. Jones, J. Larsen (1994). Hyphal phosphorus transport, a keystone to mycorrhizal enhancement of plant growth. In ‘Impact of arbuscular mycorrhizas on sustainable agriculature and natural ecosystem’ (eds. Gianinazzi S and Schuepp H), Birkhauser Verlag, Switzerland, pp. 133–146.

    Google Scholar 

  • Jalali, B.L and I. Jalali(1991). Mycorrhiza in plant disease control. In ‘Handbook of Applied Mycology’ (eds. Arora DK, Rai B, Mukerji KG, Kundsen GR). Vol.1. Soil and Plants. Marcel and Dekker, New York, pp. 131–154.

    Google Scholar 

  • Janos, D.P. (1987). In: Ecophysiology of VA mycorrhizal plants, edited by JR Safir. CRC Boca Raton. 107.

    Google Scholar 

  • Jarvis, M.C., W. Forsyth and H.J. Duncan (1988). A survey of the pectic contents of nonlignified monocot cell walls, Plant Physiology 88: 309.

    CAS  PubMed  Google Scholar 

  • Jasper, D.A., L.K. Abbott and A.D. Robson (1989). Hyphae of a vesicular arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed, New Phytol 112: 101–107.

    Google Scholar 

  • Jastrow, J.D and R.M. Miller (1997). Soil aggregate stabilization and carbon sequestration: feedbacks through organomineral associations. In: Soil Processes and the Carbon cycle. (eds.) R Lal, JM Kinble, RF Follett and BA Stewart. CRC press, Boca Raton. FL. pp. 207–223.

    Google Scholar 

  • Jeffries, P (1987). Use of mycorrhizae in agriculture, Crit., Rev. Biotechnol 5: 319–357.

    Google Scholar 

  • Johnson, N.C and F.L. Pfleger (1992). In: Mycorrhizae in sustainable agriculture, ed. G.J. Bethlenfalvay, R.G. Linderman, WI: ASA Spec. Publ. Madison, pp. 71–99.

    Google Scholar 

  • Johnson, C.R., P.J. Copeland, R.K. Crosskton and F.L. Pfleger (1992). Mycorrhizae: A possible explanation for yield decline associated with continuous cropping of corn and soyabean, Agronomy Journal 84: 387–390.

    Google Scholar 

  • Kabir, Z., I.P. O’Halloran, J.W. Fyles and C. Hamel (1998). Dynamics of the mycorrhizal symbiosis of corn (Zea mays L): Effects of host physiology, tillage practices and fertilization on spatial distribution of extra-radical mycorrhizal hyphae, Agric. Ecosys. Environ 68: 151–163.

    Google Scholar 

  • Kabir, Z., I.P., O’Halloran and C. Hamel(1999). Combined effects of soil disturbance and fallowing on plant and fungal components of mycorrhizal corn (Zea mays L.), Soil Biol. Biochem 31: 307–314.

    CAS  Google Scholar 

  • Kapoor, A., V.P. Singh and K.G. Mukerji (1988). Studies on the phosphatases on mycorrhizal and nonmycorrhizal Trigonella roots. In: ‘Mycorrhizae for green Asia’ (eds. Mahadevan A, Raman N and Natrajan, K). University Madras, Madras. India. pp. 125–127.

    Google Scholar 

  • Kellam, M.K and N.C. Schenck (1980). Interaction between a vesicular arbuscular mycorrhizal fungus and root-knot nematode on soyabean, Phytopathology 70: 293–296.

    Google Scholar 

  • Khan, A.G and M. Belik (1995). In: Mycorrhiza-structure, functions, molecular biology and biotechnology, edited by A Varma and B Hock. Springer Verlag, New York. pp. 627.

    Google Scholar 

  • Kierman, J.M., J.W. Hendrix, L.P. Soltz and D.M. Moronek (1984). Characterization of strawberry plants produced by tissue culture and infected with specific mycorrhizal fungi, Hortic.Sci 19: 883–885.

    Google Scholar 

  • Kim, S.S., S.T. Hiremath and G.K. Podila (1999). Cloning and identification of symbiosis regulated genes from ectomycorrhizal Laccatia bicolor, Mycol 103: 168–172.

    CAS  Google Scholar 

  • Klerk, G.J and J. Brugge (1992). Factors affecting adventitious root formation in microcuttings of Malus, Agronomie 12: 747–755.

    Google Scholar 

  • Koide, R.T and R.P. Schreiner (1992). Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol, Plant Molec. Biol 43: 557–581.

    CAS  Google Scholar 

  • Krishna, K.R and D.J. Bagyaraj (1986). Phenolics of mycorrhizal and uninoculated groundnut var. MGS-7, Current Research 15: 51–52.

    Google Scholar 

  • Lemoine, M.C., V. Gianinazzi-Pearson and S. Gianinazzi(1992). Application of endo-mycorrhizae to commercial production of Rhododendron microplants, Agronomie 12: 881–885.

    Google Scholar 

  • Lin, M.T., Lucena, F.B., M.A.M. Mattos, M. Paiva, M. Assis and L.S. Caldas (1987). Greenhouse production of mycorrhizal plants of nine transplanted crops. In ‘Mycorrhizae for the next decade’. Practical application and research priorities (eds. Sylvia DM, Hung LL and Graham JH), 7th NACOM, USA. pp. 281.

    Google Scholar 

  • Lin, Xian-Gui and Hao, Wen-Yin (1988). Effects of VAM inoculation on growth of several kinds of plants. In ‘Mycorrhizae for green Asia’ (eds. Mahadevan A, Raman N and Natrajan K). University of Madras, Madras, India. pp. 231–232.

    Google Scholar 

  • Lindermann, R.G (1992). Vesicular-arbuscular mycorrhizae and soil microbial interactions. In ‘Mycorrhizae in Sustainable Agriculture’ (eds. Bethlenfalvay, G.J and Linderman RG), ASA special publication number 54 USA, pp. 45–70.

    Google Scholar 

  • Ling-lee, M., G.A. Chilvers and A.E. Ashford (1975). Poly-phosphate granules in three different kinds of tree mycorrhiza, New Phytologist 75: 551–54.

    Google Scholar 

  • Lovato, A., J.P. Guillemin and S. Gianinazzi (1992). Application of commercial arbuscular endomycorrhizal fungal inoculants to the establishment of micropro-pagated grapevine rootstock and pineapple plants, Agronomie 12: 873–880.

    Google Scholar 

  • Lovato, P.E., H. Schüepp, A. Trouvelot and S. Gianinazzi (1995). Application of arbuscular mycorrhizal fungus (AMF) in orchard and ornamental plants. In ‘Mycorrhiza: structure, function, molecular biology and biotechnology’ (eds. Varma A and Hock B), Springer-Verlag, Berlin, Heidelberg, New york. pp. 443–468.

    Google Scholar 

  • Lovato, P.E., A.T. Rouvelot, V. Gianinazzi-Pearson and S. Gianinazzi (2006). Enhanced growth of wild cherry using micropropagated plants and mycorrhizal inoculum, Agro. Sustain. Dev 26: 209–213.

    Google Scholar 

  • MacGuidwin, A.E., G.W. Bird and G.R. Safir (1985). Influence of Glomus fasciculatum on Meloidogyne hapla infecting Allium cepa, Journal of Nematology 17: 389–395.

    CAS  PubMed  Google Scholar 

  • McGonigle, T.P., D.G. Evans and M.H. Miller (1990). Mycorrhizal phosphorus absorption and yield of maize in reponse to tillage, Soil Sci. Soc. Am. J. 60: 1856–1861.

    Google Scholar 

  • Marin, M., A. Mari, M. Ibarra and L. Garcia-Ferriz (2003). Arbuscular mycorrhizal inoculation of micropropagated persimmon plantlet, The J. of Horti. Sci. and Tech 5: 734–738.

    Google Scholar 

  • Mark, G.I., J.E. Hooker, A. Hahn and C.T. Wheeler (1999). In vitro culture of arbuscular mycorrhizal fungus and Frankia for inoculation of Casuarina equisetifolia L., Rev. Can. Bot 77: 1391–1397.

    Google Scholar 

  • Martensson, A.M and I. Rydberg (1995). Variability among pea varieties for infection with arbuscular mycorrhizal fungi, Swed. J. Agric. Res. 24: 13–19.

    Google Scholar 

  • Martin, A., J. Barroso and M.S. Pais (1996). Effect of ectomycorrhizal fungi on survival and growth of micropropagated plants and seedlings of Castanea sativa Mill, Mycorrhiza 6: 265–270.

    Google Scholar 

  • Mcallister, C.B., J.M. Garcia-Garrido, I. Garcia-Romera, A. Godeas and J.A. Ocampo (1996). In vitro interactions between Altemaria alternata, Fusarium equiseti and Glomus mosseae, Symbiosis 20: 163–174.

    Google Scholar 

  • Miller, R.M and J.D. Jastrow (1992). The role of mycorrhizal fungi in soil conservation. In: Mycorrhizae in Sustainable Agriculture, (eds.). GJ Bethlenfalvey and RG Linderman. ASA Special Publication No. 54. American Society of Agronomy, Madison, WI. USA, pp. 29–44.

    Google Scholar 

  • Miller, M.H., T.P. McGonigle and H.D. Addy (1995). Functional ecology of vesicular arbuscular as influenced by phosphate fertilization and tillage in agricultural ecosystems. Crit. Rev, Biotechnol 15: 241–255.

    Google Scholar 

  • Miyasaka, S.C. and M. Habte (2001). Plant mechanisms and mycorrhizal symbiosis to increase phosphorus uptake efficiency. Commun. Soil Soc, Plant Anal 32(7&8): 1101–1147.

    CAS  Google Scholar 

  • Morte, M.A., G. Diaz and Honrubia M. (1996). Effect of arbuscular mycorrhizal inoculation on micropropagated Tetraclinis articulata growth and survival, Agronomie 16: 633–637.

    Google Scholar 

  • Morton, J.B. and G.L. Benny (1990). Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporneae and two new families, Acaulosporaceae and Gigasporaceae with an emendation of Glomaceae, Mycotaxon 37: 471–491.

    Google Scholar 

  • Morton, J.B., M. Frank and G. Cloud (1992). The nature of fungal species of Glomales (Zygomycetes). In: Mycorrhiza in Ecosystems, (eds. Read DJ, Lewis DH, Filter AH and Alexander IJ). CAB International Oxon, U.K. 65–73.

    Google Scholar 

  • Morton, J.B. (1993). Problems and integration of glomalean taxonomy, systemic biology, and the study of endomycorrhizal phenomena. Mycologia 2: 97–109.

    Google Scholar 

  • Morton, J.B. and S.P. Bentivenga (1994). Levels of diversity in endomycorrhizal fungi (Glomale, Zygomycetes) and their, role in in defining taxonomic and non-taxonomic groups, Plant and Soil 159: 47–59.

    Google Scholar 

  • Mosse, B. (1977). Plant growth responses to vesicular-arbuscular mycorrhiza. X. Responses of stylosanthis and maize to inoculation in unsterile soils, New Phytologist 78:277–288.

    Google Scholar 

  • Mosse, B. (1981). Vesicular-arbuscular mycorrhiza research for tropical agriculture. Research Bull. 194. Hawaii Institute of Tropical Agriculture and Human Resources, University of Hawaii. Pp. 82.

    Google Scholar 

  • Mukerji, K.G., M. Bhattacharjee and J.P. Tiwari (1982). New species of vesicular-arbuscular mycorrhizal fungi, Trans. Br. My col. Soc 81: 641–643.

    Google Scholar 

  • Mukerji, K.G. and A. Kapoor (1990). Taxonomy of VAM fungi with special reference to Indian taxa. In ‘Perspectives in Mycological Research’ II. (eds GP Agarwal). Today and Tommorrow Printers and Pub., New Delhi, 7–16.

    Google Scholar 

  • Mukerji, K.G. (1996). Taxonomy of Endo-mycorrhizal fungi. In ‘Advances in Botany’ (eds. Mukerji KG, Mathur B, Chamola BP and Chitralekha P). Ashish Publishing House, Delhi. 211–219.

    Google Scholar 

  • Munns, D.N. and B. Mosse (1980). Mineral nutrition of legume crops. In ‘Advances in Legume Science’ (eds Summerfield, R.J. and Bunting, A.H), University of Reading Press, Reading, pp. 115–125.

    Google Scholar 

  • Naqvi, N.S. and K.G. Mukerji (1998). Mycorrhization of micropropagated Leucaena leucocephala (Lam.) de Wit., Symbiosis 24: 103–113.

    Google Scholar 

  • Nelson, S.D. and S.U. Khan (1992). Uptake of atrazine by hyphae of Glomus vesicular arbuscular mycorrhizae and root systems of corn (Zea mays L.), Weed Science 40: 161–170.

    CAS  Google Scholar 

  • Norris, J.R., D.J. Read and A.K. Varma (1991). Methods in Microbiology, Vol. 23, Academic Press, UK.

    Google Scholar 

  • Norris, J.R., D.J. Read and A.K. Varma (1992). Methods in Microbiology, Vol. 24, Academic Press, UK.

    Google Scholar 

  • Nye, P and P.B. Tinker (1977). Solute Movement in the Soil-root system. Oxford; black Well Scientific, pp. 342.

    Google Scholar 

  • Ojala, J.C., W.M. Jarell, J.A. Menge and L.V. Johnson (1983). Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil, Agronomy Journal 75:255–259.

    CAS  Google Scholar 

  • Osonubi, O., M.O. Atayese and K. Mulongoy (1995). The effect of vesicular arbuscular mycorrhizal inoculation on nutrient uptake and yield of alley cropped cassava in a degraded Alfisol of southwestern Nigeria, Biol. Fertil. Soils 20: 70–76.

    Google Scholar 

  • Paulitz, T.C. and R.G. Lindermann (1991). Mycorrhizal interactions with soil organisms. In: ‘Handbook of applied mycology’ (eds Arora DK, Rai B, Mukerji KG and Knudsen GR). Vol. I Soil and Plants. Marcel Dekker, New York. pp. 77–129.

    Google Scholar 

  • Powell, C.L. (1984). Field inoculation with VA mycorrhial fungi. In ‘VA mycorrhizae’ (eds. Powell CL and Bagyaraj DJ). CRC Press, Boca Raton, Florida. pp 205–222.

    Google Scholar 

  • Quatrini, P., M. Gentile, F. Carimi, F. De Pasquale and A.M. Puglia (2003). Effect of native arbuscular mycorrhizal fungi and Glomus mosseae on acclimatization and development of micropropagated Citrus limon (L.) Bur, The J. of Horti. Sci. and Tech 7(1): 39–45.

    Google Scholar 

  • Ragupathy, S. and A. Mahadevan (1993). Distribution of vesicular arbuscular mycorrhizae in plants and rhizosphere soils of tropical plains, Tamil Nadu, India., Mycorrhiza 3: 123–136.

    Google Scholar 

  • Rai, M.K. (2001). Current Advances in Mycorrhization in Micropropagation, In Vitro Cell Dev. Biol. Plant 37:158–167.

    Google Scholar 

  • Rai, M.K., D. Acharya, A. Varma, N.J. Chikhale, P.A. Wadegaonkar, P.V. Thakare, A.P. Ramteke, P. Kirpan and S. Shende. (2001). Arbuscular mycorrhizal fungi in growth promotion of medicinal plants. Proceedings of National Workshop on Conservation of Medicinal and Aromatic Plants, CFHRD, Chhindwara. Pp. 105–110.

    Google Scholar 

  • Rai, M.K. and A. Varma (2002). Field performance of Withania somnifera Dunal after inoculation with three species of Glomus, J. Basic Appl. Mycol 1: 74–80.

    Google Scholar 

  • Rai, M.K., A. Varma and A.K. Pandey (2004). Antifungal potential of Spilanthus calva after inoculation of Piriformospora indica, Mycoses 47(11-12): 479–481.

    CAS  Google Scholar 

  • Rai, M.K. and A. Varma (2005). Arbuscular mycorrhiza-like biotechnological potential of Piriformospora indica which promotes the growth of Adhatoda vasica Nees, Electronic Journal of Biotechnology 8(1): 107–112.

    Google Scholar 

  • Rancillac, M., F. Cadoux, D. Leduc and R. Kahane (1996). Improvement of a protocol to establish in vitro arbuscular mycorrhizal strains with vitro bulbs of onion, Allium cepa L. In: Novel biotechnological approaches to plant production: from sterile root to mycorrhizosphere. Joint COST meeting 8.21, Pisa, Itly. 32.

    Google Scholar 

  • Rani, R. and K.G. Mukerji (1988). Indian Vesicular-arbuscular mycorrhizal fungi. In ‘Mycorrhiza Round Table’ (eds Varma AK, Oka AK, Mukerji KG and Tilak KVBR and Raj J). International Developmental Research Council of Canada, New Delhi. Manuscript Report. 201: 166–180.

    Google Scholar 

  • Rani, R. and K.G. Mukerji (1990). The distribution of vesicular arbuscular mycorrhiza in India., Acta Microbiologica 37: 3–7.

    CAS  PubMed  Google Scholar 

  • Rapparini, F., G. Bertazza and R. Baraldi (1996). Growth and carbohydrate status of Pyruscommunis L. plantlets inoculated with Glomus sp. Agronomie 16: 653–661.

    Google Scholar 

  • Ravolanirina, F., S. Gianinazzi, A. Trouvelot and M. Carre (1989). Production of endomycorrhizal explants of micropropagated grapevine rootstocks, Agriculture Ecosystem and Environment 29: 323–327.

    Google Scholar 

  • Readhead, J.F. (1977). Endotropic mycorrhizas in Nigeria; species of the Endogonaceae and their distribution, Transactions of British Mycological Society 69: 275–280.

    Google Scholar 

  • Reddy, P.P (1974). Studies on the action of amino acids on the root knot nematode Meloidogyne incognita. Ph.D. Thesis, University of Agriculture Science, Bangalore, India.

    Google Scholar 

  • Remy, W., T.N. Taylor, H. Hass and H. Kerp (1994). Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Science. 91: 11841–11843.

    CAS  Google Scholar 

  • Rhodes, L.H. and J.M. Gerdemann (1978). Translocation of calcium and phosphate by external hyphae of VAM, Soil Science 125–126.

    Google Scholar 

  • Rillig, M.C., S.F. Wright, M.F. Allen and C.B. Field (1999). Rise in carbon dioxide changes soil structure, Nature 400: 628.

    CAS  Google Scholar 

  • Rosendahl, S. (1985). Interactions between the vesicular arbuscular mycorrhizal fungus Glomus fasciculatum and Aphanomyces euteiches root-rot of peas, Phytopathologische Zeitschrift. 114: 31–40.

    Google Scholar 

  • Ruiz-Lozano, J.M., R. Azcon and M. Gomez (1995). Effects of arbuscular-mycorrhizal Glomus species on drought tolerance: Physiological and nutritional plant responses, Applied and Environmental Microbiology 61: 456–460.

    CAS  PubMed  Google Scholar 

  • Ryan, M.H., G.A. Chilvers and D.C. Dumaresq (1994). Colonization of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic matter than on a conventional neighbour, Plant Soil 160: 33–40.

    Google Scholar 

  • Sahay, N.S., Sudha, A. Singh and A. Varma (1998). Trends in endomycorrhizal research, Indian J. Expt. Biol. 36: 1067–1086.

    Google Scholar 

  • Sahay, N.S. (1999). Interaction of Piriformospora indica with tissue culture raised plants. Ph.D Thesis, Jawaharlal Nehru University, New Delhi.

    Google Scholar 

  • Sahay, N.S. and A.K. Varma (2000). A biological approach towards increasing the rates of survival of microrpopagated plants, Current Science 78(2): 126–129.

    Google Scholar 

  • Salamamca, C.P., M.A. Herrera and J.M. Barea (1992). Mycorrhizal inoculation of micropropagated woody legumes used in revegetation programmes for desertified Mediterranean ecosystems, Agronomie 12: 869–872.

    Google Scholar 

  • Sbrana, C., C. Vitagliano, L. Avio and M. Giovannetti (1992). Influence of vesicular arbuscular mycorrhizae on transplant stress of micropropagated apple and peach rootstocks. In: Micropropagation, root regeneration and mycorrhizas. Joint meeting between COST 87 and COST 8.10, Dijon, France. 51.

    Google Scholar 

  • Scannerini, S. and P. Bonfanto-Fasolo (1983). Comparative ultrastructural analysis of mycorrhizal associations, Canadian Journal of Botany 61: 917–943.

    Google Scholar 

  • Schllenbaum, L., G. Berta, F. Ravolanirina, B. Tisserant, S. Gianinazzi and A.H. Fitter (1991). Influence of endomycorrhizal infection on root morphology in micropropagated woody plant species Vitis vinifera L, Annals of Botany 29: 5–13.

    Google Scholar 

  • Schellenbaum, L., G. Berta, F. Ravolanirina, B. Tisserant, S. Gianinazzi-Pearson and A.H. Fitter (1992). Influence of endomycorrhial infection on root morphology in a micropropagted woody plant species Vitis vinifera L, Annals of Botany 68: 15–151.

    Google Scholar 

  • Schellenbaum, L., J. Muller, T. Boiler, A. Weimken and H. Schuepp (1998). Effects of drought on nonmycorrhizal and mycorrhizal maize: changes in the pools of non structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids, New Phytol 138: 59–66.

    CAS  Google Scholar 

  • Schenck, N.C. and K. Hinson (1973). Response of nodulating and non-nodulating soyabeans to a species of Endogone mycorrhiza, Agronomy Journal 65: 849–850.

    Google Scholar 

  • Schonbeck, F. and H.W. Dehne (1981). Mycorrhiza and plant health. Gesellschaft Pflanzen. 33: 186–190.

    Google Scholar 

  • Schubert, A., M. Mazzitelli and I. Gribaudo(1987). Effect of inoculation with vesicular arbuscular mycorrhizal fungi on micropropagated Vitis berlandieri x V. rifaria Kober 5 BB. Proc. Symp. Florizel, Arlon (Belgium), 87: 144–153.

    Google Scholar 

  • Schubert, A., M. Mazzitelli, O. Ariusso and I. Eynard(1990). Effects of vesicular arbuscular mycorrhizal fungi on micropropagated grapewines: Influence of endophyte strain, P fertilization and growth medium, Vitis 29:5–13.

    Google Scholar 

  • Schubert, A., C. Bodrino and I. Gribaudo (1992). Vesicular arbuscular mycorrhizal inoculation of Kiwifruit (Actinidia deliciosa) micropropagated plants, Agronomie 12: 847–850.

    Google Scholar 

  • Shahollari, B., J. Vadassery, A. Varma and R. Oelmuller (2007). A leucine rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica, in Arabidospis thaliana, The Plant Journal 50(1): 1–13.

    CAS  Google Scholar 

  • Sharma, K.A., B.N. Johri and S. Gianinazzi (1992). Vesicular arbuscular mycorrhizae in relation to plant disease, World Journal of Microbiology and Biotechnology 8: 559–563.

    Google Scholar 

  • Shende, S., K. Bhagwat, P. Wadegaonkar, M. Rai and A. Varma (2006). Piriformospora indica as a new and emerging mycofertilizer and biotizer: potentials and prospects in sustainable agriculture. In: Rai, M. (ed) Handbook of microbial biofertilizer. Food Products Press, New York, pp. 477–496.

    Google Scholar 

  • Sherameti, I., B. Shahollari, Y. Venus, L. Altschmied, A. Varma and R. Oelmuller (2005). The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch drgrading enzyme glucan water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to conserved motif in their promoters, J. Bot. Chem 280: 26241–26247.

    CAS  Google Scholar 

  • Sieverding, E (1991). Vesicular-arbuscular mycorrhiza management in tropical agroeco-systems. Deutsche Gesellschaft fur technische, Zusammenabeit, Bremer, Germany.

    Google Scholar 

  • Simon, L., J. Bousquet, R.C. Leves que and M. Lalonde (1993). Origin of diversification of endomycorrhizal fungi and coincidence with vascular land plants, Nature 363: 67–69.

    Google Scholar 

  • Simoneau, P., N. Louisy-Louisy-Lois, C. Plenchette and D.G. Strullu (1994). Accumulation of new polypeptides in Ri-T-DNA-transformed roots of tomato (Lycopersicon esculentum) during the development of vesicular-arbuscular mycorrhizae, Applied and Environmental Microbiology 60: 1810–1813.

    CAS  PubMed  Google Scholar 

  • Singh, J., A.K. Patra, D.L. Nandeshwar, P.B. Meshram and K.S. Negi (2002). Effect of growth regulators on the rooting of root cuttings of Chironji (Buchanania lanzan Spreng). Proceedings of National Workshop on Conservation of Medicinal Plants. pp.128.

    Google Scholar 

  • Singh, Anjana., Archana. Singh, M. Kumari, M.K. Rai and A. Varma (2003a). Biotechnological importance of Piriformospora indica-A novel symbiotic mycorrhiza-like fungus: an overview, Indian J. of Biotechnology 2: 65–75.

    Google Scholar 

  • Siqueira, J.O., G.R. Safir and M.G. Nair (1991). VA-mycorrhizae and mycorrhiza stimulating isoflavonoid compounds reduce plant herbicide injury, Plant and Soil 134:233–242.

    CAS  Google Scholar 

  • Sitaramaiah, K and R.A. Sikora (1982). Effect of mycorrhizal fungus Glomus fasciculatus on the host parasitic relationship of Rotylenchus reniformis in tomato, Nematologica 28: 412–19.

    Google Scholar 

  • Six, J., E.T. Eilliott, K. Paustian and J.W. Doran (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils, Soil Sci. Soc. Am. J. 62:1367–1377.

    CAS  Google Scholar 

  • Smith, S.E., B.J. St John, F.A. Smith and J.L. Bromley(1986). Effect of mycorrhizal infection on plant growth nitrogen and phosphorus nutrition, New Phytologist 103: 359–373.

    Google Scholar 

  • Smith, S.E. and V. Gianinazzi-Pearson (1988). Physiological interaction between symbionts in vesicular arbuscular mycorrhizal plants, Annual Review of Plant Physiology and Plant Molecular Biology 39: 221–224.

    CAS  Google Scholar 

  • Snellgrove, R.C., W.E. Splittstrosser, D.P. Stribley and P.B. Tinker (1982). The distribution of carbon and the demand of the fungal symbiont in lak plants with vesicular arbuscular mycorrhizas, New Phytologist 92: 75–87.

    Google Scholar 

  • Stahl, P.D., S.E. Williams and M. Christensen (1988). Efficacy of native vesicular-arbuscular mycorrhizal fungi after severe soil disturbance, New Phytol 110: 347–354.

    Google Scholar 

  • Stubblefield, S.P., T.N. Taylor, and J.M. Trappe (1987). Fossil mycorrhizar a case for symbiosis, Science 237: 59–60.

    CAS  PubMed  Google Scholar 

  • Sward, R.J (1981). The structure of the spores of Gigaspora margarita II. Changes accompanying germination, New Phytologist 88: 661–666.

    Google Scholar 

  • Sylvia, D. (1990). Distribution, structure and function of external hyphae of vesicular-arbuscular mycorrhizal fungi. In Rhizosphere Dynamics, JE Box and LH Hammond (eds.). Westview Press, Boulder, Colo. pp. 144–167.

    Google Scholar 

  • Sylvia, D.M and S.E. Williams (1992). Vesicular arbuscular mycorrhizae and environmental stress. In: G.J. Bethlenfalvay, R.G. Linderman, ed. Mycorrhizae and sustainable agriculture, Madison, WI.: ASA Spec. Publication. 54: 124.

    Google Scholar 

  • Sylvia, D.M., L.C. Hammond, J.M. Bennett, J.H. Haas and S.B. Linda (1993a). Field response of maize to a VAM fungus and water management, Agron. J. 85: 193–198.

    CAS  Google Scholar 

  • Tester, M., S.E. Smith, F.A. Smith and N.A. Walker (1986). Effects of photon irradiance on the growth of shoots and roots in the rate of initiation of mycorrhizal infection and on the growth of infection units in Trifolium subterraneum L, New Phytologist 103: 375–390.

    Google Scholar 

  • Tester, M., S.E. Smith and F.A. Smith (1987). The phenomenon of ‘nonmycorrhizal’ plants, Canadian Journal of Botany 65: 419–431.

    Google Scholar 

  • Thompson, J.P. (1994). What is the potnential for the management of mycorrhizas in agriculture? In ‘Manegment and mycorrhiza in agriculture, horticulture and forestry’ (eds. Robson AD, Abbott LK and Lalajczuk N), Kluwer Academic, Netherlands. pp. 191–200.

    Google Scholar 

  • Tisdall, J.M. and J.M. Oades (1982). Organic matter and water stable aggregate in soils, J. Soil Sci 33: 141–163.

    CAS  Google Scholar 

  • Tisserant, B. and V. Gianinazzi-Pearson (1992). Micropropagation of Plantanus x acerifolia (Wild) and Post vitro VA endomycorrhization: problems and progress. In: Micropropagation, root regeneration and mycorrhizas. Joint meeting between COST 87 and COST 8.10, Dijon, France. 48.

    Google Scholar 

  • Usoukainen, M. and M. Vestberg (1994). Effect of inoculation with arbuscular mycorrhizas on rooting, weaning and subsequent growth of micropropagated Malus (L) Moench. Agriculture Science, Finland.

    Google Scholar 

  • Usoukainen, M. and M. Vestberg (1996). Timing of AMF inoculation to microcuttings of crab apple cv. Margarita. In: Novel biotechnological approaches to plant production: from sterile root to mycorrhizosphere. Joint COST meeting 8.21, Pisa, Italy: 30.

    Google Scholar 

  • Vadassery, J., C. Ritter, Y. Venus, I. Camehl, A. Varma, B. Shahollari, O. Novak, M. Strnad, J.L. Muller and R. Oelmuller (2008). The role of auxins and cytokines in the mutualistic interactions between Arabidopsis and Piriformospora indica, Molecular Plant-Microbe Interactions 21(10): 1371–1383.

    CAS  Google Scholar 

  • Varma, A. and H. Schuepp (1994a). Positive influence of arbuscular mycorrhizal fungus on in vitro raised Hortensia plantlets, Angewandte Botanic 15: 108–115.

    Google Scholar 

  • Varma, A. and H. Schuepp (1994b). Infectivity and effectiveness of Glomus intraradices on micropropagated plants, Mycorrhiza 5: 29–37.

    Google Scholar 

  • Varma, A.and H. Schuepp (1995). Mycorrhization of mycorrhizal plantlets. In ‘Mycorrhizae: biofertilizers for the future’ (eds. Adholeya A and Singh S), Tata Energy Research Institute, New Delhi, pp. 322–327.

    Google Scholar 

  • Varma, S., A. Varma, K.H. Rexer, A. Hassel, G. Kost, A. Sarbhoy, P. Bisen, B. Buetehorn and P. Franken (1998). Piriformospora indica, gen. et sp. Nov., a new root-colonizing fungus. Mycologia, 90: 896–903.

    Google Scholar 

  • Varma, A., S. Verma, Sudha, N. Sahay, B. Butehorn and P. Franken (1999a). Piriformospora indica, a cultivable plant growth promoting root endophyte, Appl Environ Microbiol, 65(6): 2741–2744.

    CAS  PubMed  Google Scholar 

  • Vestberg, M. (1992). VAM inoculation of Finnish strawberry. In: Micropropagation, root regeneration and mycorrhizas. Joint meeting between COST 87 and COST 8.10, Dijon, France. 46.

    Google Scholar 

  • Vestberg, M. and V. Estaun (1994). Micropropagated plants, an opportunity to positively manage mycorrhizal activities. In: ‘Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystem’ (eds. Gianinazzi S and Schuepp H). Birkhauser Verlag, Basel/Switzerland, pp. 217–226.

    Google Scholar 

  • Vestberg, M. and M. Uosukainen(1996). Effect of AMF inoculation on rooting and subsequent growth of cuttings and microcuttings of greenhouse rose Mercedes. In: Novel biotechnological approaches to plant production: from sterile root to mycorrhizosphere. Joint COST action 8.21 and 8.22, Pise, Italy. 46.

    Google Scholar 

  • Vosatka, M., J. Jansa, M. Regver, F. Sramek and R. Malcova (1999). Inoculation with mycorrhizal fungi-a feasible biotechnology for horticulture, Phyton. Annu. Rev. Bot, 39: 219–224.

    Google Scholar 

  • Waller, F., B. Achatz, H. Baltruschat, J. Fodor, K. Becker, M. Fisher, T. Heier, R. Huckelhoven, C. Neumann, D. von Wettstein, P. Franken and K.H. Kogel (2005). The endophytic fugus Piriformospora indica reprograms barley to salt stress tolerance, disease resistance and higher yield, Proc. Natl. Acad. Sci, USA, 102: 13386–13391.

    CAS  PubMed  Google Scholar 

  • White, J.A. and M.J. Brown (1979). Ultrastructure and X-ray analysis of phosphorus granules in vesicular-arbuscular mycorrhizal fungus, Canadian Journal of Botany, 57:2812–2818.

    CAS  Google Scholar 

  • Williams, S., M. Vestberg, M. Uosukainen, J. Dodd and P. Jeffries (1992). Incorporation of Arbuscular Mycorrhizal Fungi (AMF) into the weaning stage of strawberry micropropagation. In: Micropropagation, root regeneration and mycorrhizas. Joint meeting between COST 87 and COST 8.10, Dijon, France: 58.

    Google Scholar 

  • Wright, S.F. and P.D. Milkier (1994). Dynamic processes of vesicular-arbuscular mycorrhizae: A mycorrhizosystem within the agroecosystem. In: Advances in soil science. Soil biology: Effects on soil quality. J.L. Hatfield and B.A. Stewart (eds.) Lewis publishers, Boca Raton, FL. pp. 29–59.

    Google Scholar 

  • Wright, S.F. and A. Upadhyaya (1996). Extraction of an abundant and unusal protein from soil and comparison with hyphal protein on arbuscular mycorrhizal fungi, Plant Soil, 161:575–586.

    CAS  Google Scholar 

  • Wright, S.F., M. Franke-Snyder, J.B. Morton and A. Upadhyaya (1996). Time course study and partial characterization of a protein on arbuscular mycorrhizal hyphae during active colonization of roots, Plant Soil 181: 193–203.

    CAS  Google Scholar 

  • Wright, S.F. and A. Upadhyaya(1998). A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi, Plant and Soil, 198: 97–107.

    CAS  Google Scholar 

  • Wyass, P., R.B. Mellor and A. Wiemken (1990). Vesicular arbuscular mycorrhizas of wild type soyabean and non-nodulating mutants with Glomus mosseae contain symbiosis specific polypeptides (mycorrhizins), immunologically cross-reactive with nodulinns, Planta 182: 22–26.

    Google Scholar 

  • Yost, R.S. and R.L. Fox (1979). Contribution of mycorrhizae to the P nutrition of crops growing on an oxisol, Agronomy Journal 71: 903–908.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Scientific Publishers (India)

About this chapter

Cite this chapter

Shende, S., Rai, M. (2010). Role of Mycorrhizal Fungi in Growth Promotion of Crop Plants. In: Rai, M., Kövics, G. (eds) Progress in Mycology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3713-8_9

Download citation

Publish with us

Policies and ethics