Skip to main content

Biological, Chemical and Photochemical Treatment of Commercially Important Naphthalene Sulphonates

  • Chapter
  • First Online:
Xenobiotics in the Urban Water Cycle

Part of the book series: Environmental Pollution ((EPOL,volume 16))

Abstract

In the present work, the rather limited data available regarding the sources, concentrations and treatability of naphthalene sulphonates in biological and chemical treatment systems is discussed and reviewed. Due to the refractory nature of most commercial naphthalene sulphonates, this review focused on the application of advanced oxidation processes for their efficient degradation by providing a deeper insight into the reaction mechanisms involved and products formed in advanced chemical and photochemical oxidation of important naphthalene sulphonates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso, M. C., Tirapu, L., Ginebreda, A., & Barcelo, D. (2005). Monitoring and toxicity of sulfonated derivatives of benzene and naphthalene in municipal sewage treatment plants. Environmental Pollution, 137, 253-262.

    Article  CAS  Google Scholar 

  • Altenbach, B., & Giger, W. (1995). Determination of benzene- and naphthalene sulfonates in wastewater by solid-phase extraction with graphitized carbon black and ion-pair liquid chromatography with UV detection. Analytical Chemistry, 67, 2325-2333.

    Article  CAS  Google Scholar 

  • Alvares, A. B. C., Diaper, C., & Parsons, S. A. (2001). Partial oxidation by ozone to remove recalcitrance from wastewaters-a review. Environmental Technology, 22, 409-427.

    Article  CAS  Google Scholar 

  • Arslan-Alaton, I., Olmez-Hanci, T., Gursoy, B. H., & Tureli, G. (2009). H2O2/UV-C treatment of the commercially important aryl sulfonates H-, K-, J-acid and Para base: Assessment of photodegradation kinetics and products. Chemosphere 76, 587-594.

    Google Scholar 

  • Breithaupt, T., Reemtsma, T., Jekel, M., Storm, T., & Wiesmann, U. (2003). Combined biological treatment/ozonation of wastewaters for the mineralisation of non-biodegradable naphthalene-1, 5-disulphonic acid. Acta Biotechnology, 23, 321-333.

    Article  CAS  Google Scholar 

  • Brilon, C., Beckmann, W., Hellwig, M., & Knackmuss, H.-J. (1981). Enrichment and isolation of naphthalenesulfonic acids utilizing pseudomonas. Applied and Environmental Microbiology, 42, 39-43.

    CAS  Google Scholar 

  • Calderara, V., Jekel, M., & Zaror, C. (2001). Kinetics of ozone reactions with 1-naphthalene, 1, 5-naphthalene and 3-nitrobenzene sulphonic acids in aqueous solutions. Water Science and Technology, 44, 7-13.

    CAS  Google Scholar 

  • Calderara, V., Jekel, M., & Zaror, C. (2002). Ozonation of 1-naphthalene, 1, 5-naphthalene and 3-nitrobenzene sulphonic acids in aqueous solutions. Environmental Technology, 23, 373-380.

    Article  CAS  Google Scholar 

  • Chen, Y. H., Chang, C. Y., Huang, S. F., Chiu, C. Y., Ji, D., Shang, N. C., et al. (2002). Decomposition of 2-naphthalenesulfonate in aqueous solution by ozonation with UV radiation. Water Research, 36, 4144-4154.

    Article  CAS  Google Scholar 

  • Chung, K. T., & Cerniglia, C. E. (1992). Mutagenicity of azo dyes: Structure-activity relationships. Mutation Research/Reviews in Genetic Toxicology, 277(3), 201-220.

    Article  CAS  Google Scholar 

  • Cooper, P. (1995). Colour in dyehouse effluent. Oxford: Society of Dyers and Colourists, Alden Press.

    Google Scholar 

  • De Wever, H., Weiss, S., Reemtsma, T., Vereecken, J., Müller, J., Knepper, T., et al. (2007). Comparison of sulfonated and other micropollutants removal in membrane bioreactor and conventional wastewater treatment. Water Research, 41, 935-945.

    Article  Google Scholar 

  • Ercole, C., Botta, A. L., Sulpizi, M., Veglio, F., & Lepidi, A. (2005). Microbial desulphonation and b-naphthol formation from 2-naphthalenesulphonic acid. Process Biochemistry, 40, 2297-2303.

    Article  CAS  Google Scholar 

  • Fabri, D., Prevot, B. A., & Pramauro, E. (2005). Photocatalytic degradation of aromatic sulfonates present in industrial percolates. Journal of Applied Electrochemistry, 35, 815-820.

    Article  Google Scholar 

  • Gehringer, P., Eschweiler, H., Weiss, S., & Reemtsma, T. (2006). Decomposition of aqueous naphthalene-1, 5-disulfonic acid by means of oxidation process. Ozone Science and Engineering, 28, 437-443.

    Article  CAS  Google Scholar 

  • Jandera, P., Buncekova, S., Halama, M., Novotna, K., & Nepras, M. (2004). Naphthalene sulphonic acids-new test compounds for characterization of the columns for reversed-phase chromatography. Journal of Chromatography A, 1059, 61-72.

    Article  CAS  Google Scholar 

  • Jandera, P., Fischer, J., & Prokes, B. (2001). HPLC determination of chlorobenzenes, benzenesulphonyl chlorides and benzenesulphonic acids in industrial wastewater. Chromatographia, 54, 581-587.

    Article  CAS  Google Scholar 

  • Kahnert, A., Vermeij, P., Wietek, C., James, P., Leisinger, T., & Kertesz, M. A. (2000). The ssu locus play a key role organosulfur metabolism in Pseudomonas putida S-313. Journal of Bacteriology, 182, 2869-2878.

    Article  CAS  Google Scholar 

  • Knepper, T. P., Sacher, F., Lange, F. T., Brauch, H. J., Karrenbrock, F., Roerden, O., et al. (1999). Detection of polar organic substances relevant for drinking water. Waste Management, 19, 77-99.

    Article  CAS  Google Scholar 

  • Kölbener, P., Baumann, U., Cook, A. M., & Leisinger, T. (1994). 3-Nitrobenzenesulfonic acid and 3aminobenzenesulfonic acid in a laboratory trickling filter: biodegradability with different activated sludges. Water Research, 28, 1855-1860.

    Article  Google Scholar 

  • Lange F.T., Knepper T.P., Sacher F., Brauch, H.J., Karrenbrock F., Roerden O. & Lindner, K. (1998). Detection of polar organic substances relevant for drinking water.Waste Management, 19(2), 77-79.

    Article  Google Scholar 

  • Legrini, O., Oliveros, E., & Braun, A. M. (1993). Photochemical processes for water-treatment. Chemical Reviews, 93, 671-698.

    Article  CAS  Google Scholar 

  • Li, S. J., Zhang, L., Chen, H. L., Chai, H., & Gao, C. J. (2006). Complex extraction and stripping of H-acid wastewater. Desalination, 206, 92-99.

    Article  Google Scholar 

  • Locher, H. H., Thurubeer, T., Leisinger, T., & Cook, A. M. (1989). 3-Nitrobenzenesufonate, 3-aminobenzenesufonate, and 4-aminobenzenesufonate as sole carbon sources for bacteria. Applied and Environmental Microbiology, 55, 492-494.

    CAS  Google Scholar 

  • Mohanty, S., Rao, N. N., Khare, P., & Kaul, S. N. (2005). A coupled photocatalytic-biological process for degradation of 1-amino-8-naphthol-3, 6-disulfonic acid (H-acid). Water Research, 39, 5064-5070.

    Article  CAS  Google Scholar 

  • Noorjahan, M., Reddy, M. P., Kumari, V. D., Lavedrine, B., Boule, P., & Subrahmanyam, M. (2003). Photocatalytic degradation of H-acid over a novel TiO2 thin film fixed bed reactor and in aqueous suspensions. Journal of Photochemistry and Photobiology A: Chemistry, 156, 179-187.

    Article  CAS  Google Scholar 

  • O’Neill, C., Hawkes, F. R., Hawkes, D. L., Esteves, S., & Wilcox, S. J. (1999). Anaerobic and aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye. Water Research, 34, 2355-2361.

    Article  Google Scholar 

  • Oh, S. W., Kang, M. N., Cho, C. W., & Lee, M. W. (1997). Detection of carcinogenic amines from dyestuffs or dyed substrates. Dyes and Pigments, 33, 119-135.

    Article  CAS  Google Scholar 

  • Oppenländer, T. (2003). Photochemical purification of water and air. Weinheim: Wiley-VCH.

    Google Scholar 

  • Panizza, M., & Cerisola, G. (2001). Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent. Water Research, 35, 3987-3992.

    Article  CAS  Google Scholar 

  • Panizza, M., Zolezzi, M., & Nicolella, C. (2006). Biological and electrochemical oxidation of naphthalene sulfonates. Journal of Chemical Technology and Biotechnology, 81, 225-232.

    Article  CAS  Google Scholar 

  • Private Communication. (2008). Private communications with the textile manufacturing plants Pisa and Akin Tekstil, and the dye manufacturing plant Setas Chemical Company.

    Google Scholar 

  • Razo-Flores, E., Donlon, B., Field, J., & Lettinga, G. (1996). Biodegradability of N-substituted aromatics and alkylphenols under methanogenic conditions using granular sludge. Water Science and Technology, 33, 47-57.

    Article  CAS  Google Scholar 

  • Reife, A., & Freeman, H. S. (1996). Environmental chemistry of dyes and pigments. New York: John Wiley.

    Google Scholar 

  • Rieger, P. G., Meier, H. M., Gerle, U., Groth, T., & Knackmuss, H. J. (2002). Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence. Biotechnology, 94, 101-123.

    Article  CAS  Google Scholar 

  • Sánchez-Polo, M., & Rivera-Utrilla, J. (2006). Photooxidation of naphthalenesulphonic acids in presence of transition metal-doped carbon aerogels. Applied Catalysis. B, Environmental, 62, 93-100.

    Article  Google Scholar 

  • Sánchez-Polo, M., Rivera-Utrilla, J., & Zaror, C. A. (2002). Advanced oxidation with ozone of 1, 3, 6,-naphthalene sulfonic acid in aqueous solution. Journal of Chemical Technology and Biotechnology, 77, 148-154.

    Article  Google Scholar 

  • Shiyun, Z., Xuesong, Z., & Daotang, L. (2002). Ozonation of naphthalene sulfonic acids in aqueous solutions. Part I: Elimination of COD, TOC and increase of their biodegradability. Water Research, 36, 1237-1243.

    Article  Google Scholar 

  • Socha, A., Chrzescijanska, E., & Kusmierek, E. (2005). Electrochemical and photoelectrochemical treatment of 1-aminonaphthalene-3, 6-disulphonic acid. Dyes and Pigments, 67, 71-75.

    Article  CAS  Google Scholar 

  • Socha, A., Chrzescijanska, E., & Kusmierek, E. (2006). Photoelectrochemical treatment of 1-amino-8-hydroxynaphthalene-3, 6-disulphonic acid at electrode covered with TiO2/RuO2. Dyes and Pigments, 71, 10-18.

    Article  CAS  Google Scholar 

  • Song, Z., Edwards, S., & Burns, R. G. (2005). Biodegradation of 2-naphthalene sulfonic acid present in tannery wastewater by bacterial isolates Arthrobacter sp. 2AC and Comamonas sp. 4BC. Biodegradation, 16, 237-252.

    Google Scholar 

  • Song, Z., Edwards, S. R., & Burns, R. G. (2006). Treatment of naphthalene-2-sulfonic acid from tannery wastewater by a granular activated carbon fixed bed inoculated with bacterial isolates Arthrobacter globiformis and Comamonas testosteroni. Water Research, 40, 495-506.

    Article  CAS  Google Scholar 

  • Song, Z., Edwards, S. R., Howland, K., & Burns, R. G. (2003). Analysis of a retan agent used in the tanning process and its determination in tannery wastewater. Analytical Chemistry, 75, 1285-1293.

    Article  CAS  Google Scholar 

  • Steinitz, Y. L. (1981). Microbial desulfonation of lignosulfonate: A new approach. European Journal of Industrial Microbiology and Biotechnology, 7, 216-221.

    Article  Google Scholar 

  • Stolz, A. (1999). Degradation of substituted naphthalenesulfonic acids by Sphingomonas xenophaga BN6. Journal of Industrial Microbiology and Biotechnology, 23, 391-399.

    Article  CAS  Google Scholar 

  • Stolz, A., Contzen, M., Wittich, R. M., & Knackmuss, H. J. (2001). Degradation of benzene 1, 3-disulfonate by a mixed bacterial culture. FEMS Microbiology Letters, 136, 45-50.

    Google Scholar 

  • Sun, L., Lu, H., & Zhou, J. (2008). Degradation of H-acid by combined photocatalysis and ozonation processes. Dyes and Pigments, 76, 604-609.

    Article  CAS  Google Scholar 

  • Swaminathan, K., Sandhya, S., Sophia, C., Pachhade, K., & Subrahmanyam, Y. V. (2003). Decolorization and degradation of H-acid and other dyes using ferrous-hydrogen peroxide system. Chemosphere, 50, 619-625.

    Article  CAS  Google Scholar 

  • Takeo, M., Takeya, N., Takatani, K., Maeda, Y., & Nakaoka, O. (1997). Mineralization and desulfonation of 3-nitrobenzenesulfonic acid by Alcaligenes sp. Ga-l. Journal of Fermentation and Bioengineering, 83, 505-509.

    Article  CAS  Google Scholar 

  • Tan, N. C. G., Lettinga, G., & Field, J. A. (1999). Reduction of the azo dye Mordant Orange 1 by methanogenic granular sludge exposed to oxygen. Bioresource Technology, 67, 35-42.

    Article  CAS  Google Scholar 

  • Tan, N. C. G., van Leeuwen, A., van Voorthuizen, E. M., Slenders, P., Prenafeta-BoldÅ­, T., Temmink, H., et al. (2005). Fate and biodegradability of sulfonated aromatic amines. Biodegradation, 16, 527-537.

    Article  CAS  Google Scholar 

  • Yu, G., Zhu, W., Yang, Z., & Li, Z. (1998). Semiconductor photocatalytic oxidation of H-acid aqueous solution. Chemosphere, 36, 2673-2681.

    Article  CAS  Google Scholar 

  • Zerbinati, O., Vincenti, M., Pittavino, S., & Gennaro, M. C. (1997). Fate of aromatic sulfonates in fluvial environment. Chemosphere, 35, 2295-2305.

    Article  CAS  Google Scholar 

  • Zhou, H., & Smith, D. W. (2001). Advanced technologies in water and wastewater treatment. Canadian Journal of Civil Engineering, 28, S49-S66.

    Article  Google Scholar 

  • Zürrer, D., Cook, A. M., & Leisinger, T. (1987). Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids. Applied and Environmental Microbiology, 53, 1459-1463.

    Google Scholar 

  • http://www.chemweek.com/?gclid=CKWP1q6RpJcCFQsh3godwCSmDA.

  • http://www.indiastat.com/india/ShowData.asp?secid=11391&ptid=107700&level=3.

Download references

Acknowledgements

The financial support of the Turkish Technological and Scientific Research Council (TUBITAK) under project number 108Y051 is acknowledged. The efforts of Betül Hande Gürsoy and Gökce Türeli during the photochemical experiments, as well as the technical support of Prof. Dilek Kazan and Res. Assist. Selim Ceylan (Marmara University, Engineering Faculty, Bioengineering Program) during mass spectrometric analysis, are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idil Arslan-Alaton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Arslan-Alaton, I., Olmez-Hanci, T. (2010). Biological, Chemical and Photochemical Treatment of Commercially Important Naphthalene Sulphonates. In: Fatta-Kassinos, D., Bester, K., Kümmerer, K. (eds) Xenobiotics in the Urban Water Cycle. Environmental Pollution, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3509-7_22

Download citation

Publish with us

Policies and ethics