Skip to main content

Photochemical Transformation of Pharmaceuticals in the Aquatic Environment: Reaction Pathways and Intermediates

  • Chapter
  • First Online:
Xenobiotics in the Urban Water Cycle

Part of the book series: Environmental Pollution ((EPOL,volume 16))

Abstract

In recognition of the growing concern regarding the photochemical transformation of pharmaceuticals in the aquatic environment, the focus of this chapter is on current knowledge on the photochemical transformation of selected pharmaceutical compounds in aquatic systems in order to reveal the key areas and perspectives of this research field. Some of the most important groups of pharmaceuticals known to occur in the environment, such as non-steroidal anti-inflammatory drugs, analgesics, antidepressants and estrogens, are discussed in this chapter. Processes considered include environmental photolysis and photochemical advanced oxidation processes (PAOPs) in homogeneous (UV/H2O2, Photo-Fenton and Photoelectron-Fenton) and heterogeneous (TiO2/UV) media. The phototransformation of pharmaceuticals proceeds usually through the formation of long-lived intermediate species. Thus, we have attempted to provide an overview of the nature of principal organic intermediates, the degradation pathways followed and the evolution of the mineralization in the photochemical process considered. Major degradation pathways usually include hydroxylation, isomerization, dehalogenation, dealkylation, cyclization, decarboxylation, dimerization and ring opening (for aromatic compounds), leading to corresponding derivatives as well as carboxylic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agüera, A., Pérez Estrada, L. A., Ferrer, I., Thurman, E. M., Malato, S., & Fernández-Alba, A. R. (2005). Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. Journal of Mass Spectrometry, 40, 908–915.

    Article  Google Scholar 

  • Andreozzi, R., Marotta, R., Pinto, G., & Pollio, A. (2002). Carbamazepine in water: Persistence in the environment, ozonation treatment and preliminary assessment on algal toxicity. Water Research, 36, 2869–2877.

    Article  CAS  Google Scholar 

  • Andreozzi, R., Raffaele, M., & Nicklas, P. (2003a). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50, 1319–1330.

    Article  CAS  Google Scholar 

  • Andreozzi, R., Caprio, V., Marotta, R., & Vogna, D. (2003b). Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system. Water Research, 37, 993–1004.

    Article  CAS  Google Scholar 

  • Arnold, W. A., & McNeill, K. (2007). Transformation of pharmaceuticals in the environment: Photolysis and other abiotic processes. Comprehensive Analytical Chemistry, 50, 361–385.

    Article  CAS  Google Scholar 

  • Barceló, D., & Petrovic, M. (2007). Pharmaceuticals and personal care products (PPCPs) in the environment. Analytical and Bioanalytical Chemistry, 387, 1141–1142.

    Google Scholar 

  • Boreen, A. L., Arnold, W. A., & McNeill, K. (2003). Photodegradation of pharmaceuticals in the aquatic environment: A review. Aquatic Sciences, 65, 320–341.

    Article  CAS  Google Scholar 

  • Boscá, F., Miranda, M. A., Vañó, L., & Vargas, F. (1990). New photodegradation pathways for Naproxen, a phototoxic non-steroidal anti-inflammatory drug. Journal of Photochemistry and Photobiology, A: Chemistry, 54, 131–134.

    Google Scholar 

  • Buser, H.-R., Poiger, T., & Müller, M. D. (1998). Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid photodegradation in a lake. Environmental Science and Technology, 32, 3449–3456.

    Article  CAS  Google Scholar 

  • Calza, P., Sakkas, V. A., Medana, C., Baiocchi, C., Dimou, A., Pelizzetti, E., et al. (2006). Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 67, 197–205.

    Article  CAS  Google Scholar 

  • Castell, J. V., Gomez, M. J., Miranda, M. A., & Morera, I. M. (1987). Photolytic degradation of ibuprofen toxicity of the isolated photoproducts on fibroplasts and erythrocytes. Photochemistry and Photobiology, 46, 991–996.

    Article  CAS  Google Scholar 

  • Chiron, S., Minero, C., & Vione, D. (2006). Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters. Environmental Science Technology, 40, 5977–5983.

    Article  CAS  Google Scholar 

  • Daughton, G. C., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environmental Health Perspectives, 107, 907–938.

    Article  CAS  Google Scholar 

  • Dbska, J., Kot-Wasik, A., & Namienik, J. (2004). Fate and analysis of pharmaceutical residues in the aquatic environment. Critical Reviews in Analytical Chemistry, 34, 51–67.

    Article  Google Scholar 

  • DellaGreca, M., Brigante, M., Isidori, M., Nardelli, A., Previtera, L., Rubino, M., et al. (2004). Phototransformation and ecotoxicity of the drug Naproxen-Na. Environmental Chemistry Letters, 1, 237–241.

    Article  CAS  Google Scholar 

  • Doll, T. E., & Frimmel, F. H. (2003). Fate of pharmaceuticals - Photodegradation by simulated solar UV-light. Chemosphere, 52, 1757–1769.

    Article  CAS  Google Scholar 

  • Doll, T. E., & Frimmel, F. H. (2005). Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water. Catalysis Today, 101, 195–202.

    Article  CAS  Google Scholar 

  • Ellis, J. B. (2006). Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environmental Pollution, 144, 184–189.

    Article  CAS  Google Scholar 

  • Encinas, S., Bosca, F., & Miranda, M. (1998). Photochemistry of 2, 6- dichlorodiphenylamine and 1-chlorocarbazole, the photoactive chromophores of diclofenac, meclofenamic acid and their major photoproducts. Photochemistry and Photobiology, 68, 640–645.

    CAS  Google Scholar 

  • Feng, X., Dinga, S., Tua, J., Wu, F., & Deng, N. (2005). Degradation of estrone in aqueous solution by photo-Fenton system. Science of the Total Environment, 345, 229–237.

    Article  CAS  Google Scholar 

  • Heberer, T., Fuhrmann, B., Schmidt-Baumler, K., Tsipi, D., Koutsouba, V., & Hiskia, A. (2001). In C. G. Daughton & T. L. Jones-Lepp (Eds.), Pharmaceuticals and personal care products in the environment: Scientific and regulatory issues. Washington, DC: American Chemical Society.

    Google Scholar 

  • Hernando, M. D., Petrovic, M., Radjenovic, J., Fernández-Alba, A. R., Fernández-Alba, A. R., & Barceló, D. (2007). Removal of pharmaceuticals by advanced treatment technologies. Comprehensive Analytical Chemistry, 50, 451–474.

    Article  Google Scholar 

  • Ikehata, K., Naghashkar, N. J., & El-Din, M. G. (2006). Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone: Science and Engineering, 28, 353–414.

    Article  CAS  Google Scholar 

  • Isidori, M., Lavorgna, M. T., Nardellia, A., Parrella, A., Previtera, L., & Rubino, M. (2005). Ecotoxicity of naproxen and its phototransformation products. Science of the Total Environment, 348, 93–101.

    Article  CAS  Google Scholar 

  • Jimenez, M., Miranda, M., & Tormos, R. (1997). Photochemistry of naproxen in the presence of b-cyclodextrin. Journal of Photochemistry and Photobiology A: Chemistry, 104, 119–121.

    Article  CAS  Google Scholar 

  • Khetan, S. K., & Collins, T. J. (2007). Human pharmaceuticals in the aquatic environment: A challenge to green chemistry. Chemical Reviews, 107, 2319–2364.

    Article  CAS  Google Scholar 

  • Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 35, 402–417.

    Article  CAS  Google Scholar 

  • Kolpin, D., Furlong, E., Meyer, M., Thurman, E., Zaugg, S., Barber, L., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environmental Science and Technology, 36, 1202–1211.

    Article  CAS  Google Scholar 

  • Kümmerer, K. (Ed.). (2004). In pharmaceuticals in the environment: Sources, fate, effects and risks (2nd ed.). Heidelberg: Springer.

    Google Scholar 

  • Lam, M., Young, C., Brain, R., Hanson, M., Johnson, D., Wilson, C., et al. (2004). Aquatic persistence of eight pharmaceuticals in a microcosm study. Environmental Toxicology and Chemistry, 23, 1431–1440.

    Article  CAS  Google Scholar 

  • Lam, M., & Mabury, S. (2005). Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquatic Sciences, 67, 177–188.

    Article  CAS  Google Scholar 

  • Lin, A., & Reinhard, M. (2005). Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environmental Toxicology and Chemistry, 24, 1303–1309.

    Article  CAS  Google Scholar 

  • Litter, M.I. (2005). Introduction to photochemical advanced oxidation processes for water treatment. The Handbook of Environmental Chemistry, Environmental Photochemistry Part II (vol. 2, pp. 325–366). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Martinez, L. J., & Scaiano, J. C. (1997). Transient intermediates in the laser flash photolysis of ketoprofen in aqueous solutions: Unusual photochemistry for the benzophenone chromophore. Journal of the American Chemical Society, 119, 11066–11070.

    Article  CAS  Google Scholar 

  • Matamoros, V., Duhec, A., Albaigés, J., & Bayona, J. M. (2009). Photodegradation of carbamazepine, ibuprofen, ketoprofen and 17β-ethinylestradiol in fresh and seawater. Water Air Soil Pollution, 196, 161–168.

    Article  CAS  Google Scholar 

  • Mazellier, P., Méité, L., & De Laat, J. (2008). Photodegradation of the steroid hormones 17b-estradiol (E2) and 17a-ethinylestradiol (EE2) in dilute aqueous solution. Chemosphere, 73, 1216–1223.

    Article  CAS  Google Scholar 

  • Méndez-Arriaga, F., Esplugas, S., & Giménez, J. (2008). Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Research, 42, 585–594.

    Article  Google Scholar 

  • Moore, D. E. (1998). Mechanisms of photosensitization by phototoxic drugs. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 422, 165–173.

    Article  CAS  Google Scholar 

  • Moore, D. E., & Chappuis, P. P. (1988). A comparative study of the photochemistry of the non-steroidal anti-inflammatory drugs naproxen, benoxaprofen and indomethacin. Photochemistry and Photobiology, 47, 173–180.

    Article  CAS  Google Scholar 

  • Moore, D. E., Roberts-Thomson, S., Zhen, D., & Duke, C. C. (1990). Photochemical studies on the anti-inflammatory drug diclofenac. Photochemistry and Photobiology, 52, 685–690.

    Article  CAS  Google Scholar 

  • Nakajima, A., Tahara, M., Yoshimura, Y., & Nakazawa, H. (2005). Determination of free radicals generated from light exposed ketoprofen. Journal of Photochemistry and Photobiology A, 174, 89–97.

    Article  CAS  Google Scholar 

  • Ohko, Y., Iuchi, K. I., Niwa, C., Tatsuma, T., Nakashima, T., Iguchi, T., et al. (2002). 17β-estrodial degradation by TiO2 photocatalysis as means of reducing estrogenic activity. Environmental Science and Technology, 36, 4175–4181.

    Article  CAS  Google Scholar 

  • Packer, J. L., Werner, J. J., Latch, E. D., Mcneill, K., & Arnold, W. A. (2003). Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid and ibuprofen. Aquatic Sciences, 65, 342–351.

    Article  CAS  Google Scholar 

  • Pérez-Estrada, L. A., Malato, S., Gernjak, W., Agüera, A., Thurman, E. M., Ferrer, I., et al. (2005). Photo-fenton degradation of diclofenac: Identification of main intermediates and degradation pathway. Environmental Science and Technology, 39, 8300–8306.

    Article  Google Scholar 

  • Poiger, T., Buser, H.-R., & Muller, D. (2001). Photodegradation of the pharmaceutical drug diclofenac in a lake: Pathway, field measurements and mathematical modelling. Environmental Toxicology and Chemistry, 20, 256–263.

    Article  CAS  Google Scholar 

  • Roberts, P. H., & Thomas, K. V. (2006). The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Science of the Total Environment, 356, 143–153.

    Article  CAS  Google Scholar 

  • Selimi, P., Bechrakis, N., Lambropoulou, D., & Albanis T. (2006, May). Occurrence of pharmaceutical compounds in Kalamas river basin (N.W. Greece). Paper presented at the 3rd SWIFT-WFD Workshop in collaboration with AQUATERRA.

    Google Scholar 

  • Vogna, D., Marotta, R., Andreozzi, R., Napolitano, A., & D’Ischia, M. (2004). Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine. Chemosphere, 54, 497–505.

    Article  CAS  Google Scholar 

  • Vogna, D., Marotta, R., Napolitano, A., Andreozzi, R., & D’Ischia, M. (2004). Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Research, 38, 414–422.

    Article  CAS  Google Scholar 

  • Vogna, D., Marotta, R., Napolitano, A., & D’Ischia, M. (2002). Advanced oxidation chemistry of paracetamol. UV/H2O2-induced hydroxylation/degradation pathways and 15N-aided inventory of nitrogenous breakdown products. Journal of Organic Chemistry, 67, 6143–6151.

    Google Scholar 

  • Wang, L., Zhang, F., Liu, R., Zhang, T. Y., Xue, X., Xu, Q., et al. (2007). FeCl3/NaNO2: An efficient photocatalyst for the degradation of aquatic steroid estrogens under natural light irradiation. Environmental Science and Technology, 41, 3747–3751.

    Article  CAS  Google Scholar 

  • Werner, J. J., McNeill, K., & Arnold, W. A. (2005). Environmental photodegradation of mefenamic acid. Chemosphere, 58, 1339–1346.

    Article  CAS  Google Scholar 

  • Yang, L., Yu, L. E., & Ray, M. B. (2008). Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Research, 42, 3480–3488.

    Article  CAS  Google Scholar 

  • Zhang, X., Wu, F., Wu, X., Chen, P., & Deng, N. (2008). Photodegradation of acetaminophen in TiO2 suspended solution. Journal of Hazardous Materials, 157, 300–307.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitra A. Lambropoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Konstantinou, I.K., Lambropoulou, D.A., Albanis, T.A. (2010). Photochemical Transformation of Pharmaceuticals in the Aquatic Environment: Reaction Pathways and Intermediates. In: Fatta-Kassinos, D., Bester, K., Kümmerer, K. (eds) Xenobiotics in the Urban Water Cycle. Environmental Pollution, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3509-7_10

Download citation

Publish with us

Policies and ethics