Skip to main content

Explosive Properties of Superheated Aqueous Solutions in Volcanic and Hydrothermal Systems

  • Conference paper
Metastable Systems under Pressure

Abstract

Superheated aqueous solutions in volcanic and hydrothermal environments are known to reequilibrate violently through explosive boilings and gas exsolutions. While these phenomena are purely kinetic problems in essence, the explosivity conditions of these demixion processes can be investigated by following a thermodynamic approach based on spinodal curves. In a first part, we recall briefly the concepts of mechanical and diffusion spinodals. Then, we propose to differentiate superspinodal (explosive) transformations from subspinodal (non-explosive) ones. Finally, a quantitative study of spinodal curves is attempted on the binary systems H2O-CO2 and H2O-NaCl with equations of state with solid theoretical basis. It is shown that dissolved gaseous components and electrolytes have an antagonist effect: dissolved volatiles tend to shift the superspinodal region towards lower temperatures, whereas electrolytes tend to extend the metastable field towards higher temperatures. This study may give some clues to understand the explosive destabilization conditions of aqueous solutions in phreatic, phreato-magmatic and hydrothermal eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thiéry, R. and Mercury, L. (2009) Explosive properties of water in volcanic and hydrothermal systems, J. Geophys. Res. (accepted).

    Google Scholar 

  2. Debenedetti P. G. (1996) Metastable liquids. Concepts and principles, Princeton University Press, Princeton, NJ, 411 p.

    Google Scholar 

  3. Lasaga, A. (1998) Kinetic theory in the Earth Sciences, University Press, Princeton, NJ, 811 p.

    Google Scholar 

  4. Rowlinson, J., and Swinton, F. (1982) Liquid and Liquid Mixtures, Butterworth Scientific, 3rd edition.

    Google Scholar 

  5. Imre, A., and Kraska, T. (2005) Stability limits in binary fluid mixtures, J. Chem. Phys. 122, 1–8.

    Article  Google Scholar 

  6. Wagner, W., and Pruss, A. (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535.

    Article  ADS  Google Scholar 

  7. Shmulovich, K., Mercury, L., Thiéry, R., Ramboz, C., and El Mekki, M. (2009) Superheating ability of water and aqueous solutions. Experiments and geochemical consequences, Geochimica et Cosmochimica Acta (accepted).

    Google Scholar 

  8. Kiselev, S. (1999) Kinetic boundary of metastable states in superheated and stretched liquids, Physica A 269, 252–268.

    Article  ADS  Google Scholar 

  9. Kiselev, S., and Ely, J. (2001) Curvature effect on the physical boundary of metastable states in liquids, Physica A 299, 357–370.

    Article  ADS  Google Scholar 

  10. Debenedetti, P. (2000) Phase separation by nucleation and by spinodal decomposition: fundamentals, In: Kiran, E. et al. (eds), Supercritical Fluids, pp 123–166. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  11. Abbasi, T., and Abbasi, S. (2007) The boiling liquid expanding vapour explosion (BLEVE): Mechanism, consequence assessment, management, Journal of Hazardous Materials 141, 480–519.

    Article  Google Scholar 

  12. Casal, J., and Salla, J. (2006) Using liquid superheating for a quick estimation of overpressure in BLEVEs and similar explosions, Journal of Hazardous Materials A137, 1321–1327.

    Article  Google Scholar 

  13. Planas-Cuchi, E., Salla, J., and Casal, J. (2004) Calculating overpressure from BLEVE explosions, Journal of Loss Prevention in the Process Industries 17, 431–436.

    Article  Google Scholar 

  14. Pinhasi, G., Ullmann, A., and Dayan, A. (2007) 1D plane numerical model for boiling liquid vapor explosion (BLEVE), International Journal of Heat and Mass Transfer 50, 4780–4795.

    Article  MATH  Google Scholar 

  15. Salla, J., Demichela, M., and Casal, J. (2006) BLEVE: a new approach to the superheat limit temperature, Journal of Loss Prevention in the Process Industries 19, 690–700.

    Article  Google Scholar 

  16. Reid., R. C. (1979) Possible mechanism for pressurized-liquid tank explosions or BLEVE's, Science 203, 1263–1265.

    Article  ADS  Google Scholar 

  17. Reid, R. C. (1976) Superheated liquids, Am. Scientist 64, 146–156.

    ADS  Google Scholar 

  18. Reid, R. C. (1983) Rapid phase transitions from liquid to vapour, Advances in Chemical Engineering 12, 105–208.

    Article  Google Scholar 

  19. Corradini, M. L., Kim, B. J., and Oh, M. D. (1988) Vapor explosions in light water reactors: A review of theory and modelling, Progress in Nuclear Energy 22(1), 1–117.

    Article  Google Scholar 

  20. Perfetti, E., Thiéry, R., and Dubessy, J. (2008) Equation of state taking into account dipolar interactions and association by hydrogen bonding. I- Application to pure water and hydrogen sulphide, Chem. Geol. 251, 58–66.

    Article  Google Scholar 

  21. Perfetti, E., Thiéry, R., and Dubessy, J. (2008) Equation of state taking into account dipolar interactions and association by hydrogen bonding: II- Modelling liquid-vapour equilibria in the H2O-H2S, H2O-CH4 and H2O-CO2 systems, Chem. Geol. 251, 50–57 (2008).

    Article  Google Scholar 

  22. Stryjek, R., and Vera, J. (1986) An improved Peng-Robinson equation of state with new mixing rules for strongly non ideal mixtures, Can. J. Chem. Eng. 64, 334–340.

    Article  Google Scholar 

  23. Stryjek, R., and Vera, J. (1986) PRSV2: a cubic equation of state for accurate vapour-liquid equilibrium calculations, Can. J. Chem. Eng. 64, 820–826.

    Article  Google Scholar 

  24. Stryjek, R., and Vera, J. (1986) Vapour-liquid equilibria of hydrochloric acid and solutions with the PRSV equation of state. Fluid Phase Equilibria 25, 279–290.

    Article  Google Scholar 

  25. Duan, Z., and Hu, J. (2004) A new cubic equation of state and its applications to the modeling of vapor-liquid equilibria and volumetric properties of natural fluids, Geochimica et Cosmochimica Acta 14, 2997–3009.

    Article  ADS  Google Scholar 

  26. Thiéry, R. (1996) A new object-oriented library for calculating highorder multivariable derivatives and thermodynamic properties of fluids with equations of state, Computers ' Geosciences 22(7), 801–815.

    Article  ADS  Google Scholar 

  27. Duan, Z., and Sun, R. (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chem. Geol. 193, 257–271.

    Article  Google Scholar 

  28. Asselineau, L., Bogdanic, G., and Vidal, J. (1979) A versatile algorithm for calculating vapour-liquid equilibria, Fluid Phase Equilibria 3, 273–290.

    Article  Google Scholar 

  29. Anderko, A., and Pitzer, K. (1993) Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K, Geochimica et Cosmochimica Acta 57, 1657–1680.

    Article  ADS  Google Scholar 

  30. Boublik, T. (1970) Hard sphere equation of state, J. Chem. Phys. 53, 471–472.

    Article  ADS  Google Scholar 

  31. Stell, G., Rasaiah, J., and Narang, H. (1972) Thermodynamic pertubation theory for simple polar fluids. J. Mol. Phys. 23, 393–406.

    Article  ADS  Google Scholar 

  32. Bischoff, J. (1991). Densities of liquids and vapors in boiling NaCl-H2O solutions: A PVTX summary from 300 to 500°C, Am. J. Sci. 291, 369–381.

    Article  Google Scholar 

  33. Orphanidis, E. (1995) Conditions physico-chimiques de précipitation de la barytine épigénétique dans le bassin sud-ouest de la fosse Atlantis II (Mer Rouge): données des inclusions fluides et approche expérimentale. Implications pour le dépôt des métaux de base et métaux précieux. Thèse Université d'Orléans, 180 p.

    Google Scholar 

  34. Schenker, F., and Dietrich, V. J. (1986) The Lake Nyos gas catastrophe (Cameroon): a magmatological interpretation, Schweiz. Mineral. Petrogr. Mitt. 66, 343–384.

    Google Scholar 

  35. Evans, W. C. (1996) Lake Nyos: knowledge of the fount and the cause of disaster, Nature 379(6560), 21–22.

    Article  ADS  Google Scholar 

  36. Zhang, Y. (1996) Dynamics of CO2-driven lake eruptions, Nature 379(6560), 57–59.

    Article  ADS  Google Scholar 

  37. Rice, A. (2000) Rollover in volcanic crater lakes: a possible cause for Lake Nyos type disasters. J. Volcan. Geotherm, Res. 97, 233–239.

    Article  ADS  Google Scholar 

  38. Kantha, L. H., and Freeth, S. J. (1996) A numerical simulation of the evolution of temperature and CO2 stratification in Lake Nyos since the 1986 disaster, J. Geophys. Res. 101(B4), 8187–8203.

    Article  ADS  Google Scholar 

  39. Grunewald, U., Zimanowski, B., Büttner, R., Philipps, L. F., Heide, K., and Büchel, G. (2007) MFCI experiments on the influence of NaCl-saturated water on phreato-magmatic explosions, J. Volc. Geotherm. Res. 159, 126–137.

    Article  ADS  Google Scholar 

  40. Shapiro, A., and Stenby, E. (2001) Thermodynamics of the multicomponent vapor-liquid equilibrium under capillary pressure difference, Fluid Phase Equilibria 178, 17–32.

    Article  Google Scholar 

  41. Nehlig, P. (1993) Interactions between magma chambers and hydrothermal systems: oceanic and ophiolitic constraints, J. Geophys. Res. 98(B11), 19621–19633.

    Article  ADS  Google Scholar 

  42. Driesner, T., and Geiger, S. (2007) Numerical simulation of multiphase fluid flow in hydrothermal systems, Reviews in Mineralogy & Geochemistry 65, pp. 187–215.

    Article  Google Scholar 

  43. Fyfe, W. S., Price, N. J., and Thompson, A. B. (1978) Fluids in the Earth's crust. Developments in Geochemistry 1, 383 pp., Elsevier Scientific, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Thiéry, R., Loock, S., Mercury, L. (2010). Explosive Properties of Superheated Aqueous Solutions in Volcanic and Hydrothermal Systems. In: Rzoska, S., Drozd-Rzoska, A., Mazur, V. (eds) Metastable Systems under Pressure. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3408-3_21

Download citation

Publish with us

Policies and ethics