Skip to main content

Modeling Biosensors of Complex Geometry

  • Chapter
  • First Online:
Mathematical Modeling of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 9))

  • 1572 Accesses

Abstract

Usually, when modeling a biosensor as a flat electrode having one or several layers sandwich-likely applied onto the electrode surface, a mathematical model of the biosensor is formulated in a one-dimensional-in-space domain. This chapter deals with the modeling of biosensors for which two-dimensional-in-space domains are used when describing mathematically the biosensor action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amatore C, Oleinick AI, Svir I (2006) Construction of optimal quasi-conformal mappings for the 2d-numerical simulation of diffusion at microelectrodes. Part 1: Principle of the method and its application to the inlaid disk microelectrode. J Electroanal Chem 597:69

    Google Scholar 

  2. Amine A, Kauffmann JM, Patriarche GJ (1991) Long-term operational stability of a mixed glucose oxidase-redox mediator-carbon paste electrode. Anal Lett 24:1293

    CAS  Google Scholar 

  3. Antiochia R, Lavagnini I, Magno F (2004) Amperometric mediated carbon nanotube paste biosensor for fructose determination. Anal Let 37:1657

    Article  CAS  Google Scholar 

  4. Bacon NC, Hall EAH (1999) A sandwich enzyme electrode giving electrochemical scavenging of interferents. Electroanal 11:749

    Article  CAS  Google Scholar 

  5. Bakhvalov NS, Panasenko GP (1989) Homogenization: averaging processes in periodic media. Kluwer, Dordrecht

    Google Scholar 

  6. Barnaby W (1997) Biological weapons: an increasing threat. Med Confl Surviv 13:301

    Article  CAS  Google Scholar 

  7. Baronas R, Ivanauskas F, Kulys J (1998) Modeling of a microreactor on heterogeneous surface and an influence of geometry to microreactor operation. Nonlinear Anal Model Contr 3:19

    Google Scholar 

  8. Baronas R, Ivanauskas F, Survila A (2000) Simulation of electrochemical behavior of partially blocked electrodes under linear potential sweep conditions. J Math Chem 27:267

    Article  CAS  Google Scholar 

  9. Baronas R, Ivanauskas F, Kulys J (2003) Computer simulation of the response of amperometric biosensors in stirred and non stirred solution. Nonlinear Anal Model Contr 8:3

    CAS  Google Scholar 

  10. Baronas R, Ivanauskas F, Kulys J, Sapagovas M (2003) Modeling of amperometric biosensors with rough surface of the enzyme membrane. J Math Chem 34:227

    Article  CAS  Google Scholar 

  11. Baronas R, Ivanauskas F, Kulys J, Sapagovas M (2004) Computational modeling of a sensor based on an array of enzyme microreactors. Nonlinear Anal Model Contr 9:203

    Google Scholar 

  12. Baronas R, Ivanauskas F, Kulys J (2005) Modelling biosensors with perforated membrane. Lith Math J 45(spec issue):449

    Google Scholar 

  13. Baronas R, Kulys J, Ivanauskas F (2006) Computational modeling of biosensors with perforated and selective membranes. J Math Chem 39:345

    Article  CAS  Google Scholar 

  14. Baronas R, Ivanauskas F, Kulys J (2006) Mathematical modeling of biosensors based on an array of enzyme microreactors. Sensors 6:453

    Article  CAS  Google Scholar 

  15. Baronas R, Ivanauskas F, Kaunietis I, Laurinavicius V (2006) Mathematical modeling of plate-gap biosensors with an outer porous membrane. Sensors 6:727

    Article  Google Scholar 

  16. Bertram R, Pernarowski M (1998) Glucose diffusion in pancreatic islets of Langerhans. Biophys J 74:1722

    Article  CAS  Google Scholar 

  17. Bieniasz LK, Britz D (2004) Recent developments in digital simulation of electroanalytical experiments. Polish J Chem 78:1195

    CAS  Google Scholar 

  18. Bindra DS, Zhang Y, Wilson GS et al (1991) Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal Chem 63:1692

    Article  CAS  Google Scholar 

  19. Boujtita E, el Murr N (2006) Biosensors for analysis of ethanol in food. J Food Sci 60:201

    Google Scholar 

  20. Britz D (2005) Digital simulation in electrochemistry, 3rd edn. Springer, Berlin

    Google Scholar 

  21. Buerk DG (1995) Biosensors: theory and applications. CRC Press, Lancaster

    Google Scholar 

  22. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon, Oxford

    Google Scholar 

  23. Devlin JP (ed) (1997) High throughput screening. Marcel Dekker, New York

    Google Scholar 

  24. Dirks JL (1996) Diagnostic blood analysis using point-of-care technology. AACN Clin Issues 7:249

    Article  CAS  Google Scholar 

  25. Dormieux L, Lemarchand E (2001) Homogenization approach of advection and diffusion in cracked porous material. J Eng Mech ASCE 127:1267

    Article  Google Scholar 

  26. Eggins BR (2002) Chemical sensors and biosensors. Analytical techniques in the sciences. Wiley, Chichester

    Google Scholar 

  27. Ehrfeld W, Hessel V, Lwe H (2000) Microreactors: new technology for modern chemistry. Wiley-VCH, New York

    Google Scholar 

  28. Forrow NJ, Bayliff SW (2005) A commercial whole blood glucose biosensor with a low sensitivity to hematocrit based on an impregnated porous carbon electrode. Biosens Bioelectron 21:3581

    Article  CAS  Google Scholar 

  29. Garboczi EJ (1990) Permeability, diffusivity and microstructural parameters: a critical review. Cem Concr Res 20:591

    Article  CAS  Google Scholar 

  30. Gorton L (1995) Carbon paste electrodes modified with enzymes, tissues, and cells. Electroanal 7:23

    Article  CAS  Google Scholar 

  31. Guilbault GG (1970) Enzymatic methods of analysis. Pergamon, Oxford

    Google Scholar 

  32. Ivanauskas F, Kaunietis I, Laurinavicius V et al (2008) Apparent Michaelis constant of the enzyme modified porous electrode. J Math Chem 43:1516

    Article  CAS  Google Scholar 

  33. Kulys J, Razumas V (1986) Bioamperometry. Mokslas, Vilnius (in Lithuanian)

    Google Scholar 

  34. Kulys J (1999) The carbon paste electrode encrusted with a microreactor as glucose biosensor. Biosens Bioelectron 14:473

    Article  CAS  Google Scholar 

  35. Laurinavicius VA, Kulys JJ, Gureviciene VV, Simonavicius KJ (1989) Flow through and cateter biosensors with an extended concentration range. Biomed Biochem Acta 48:905

    CAS  Google Scholar 

  36. Laurinavicius V, Razumiene J, Kurtinaitiene B et al (2002) Bioelectrochemical application of some PQQ-dependent enzymes. Bioelectrochem 55:29

    Article  CAS  Google Scholar 

  37. Luckarift HR (2008) Silica-immobilized enzyme reactors. J Liq Chromatogr R T 31:1568

    Article  CAS  Google Scholar 

  38. Moreira JE, Midkiff SP, Gupta M et al (2000) Java programming for high performance numerical computing. IBM Systems J 39:21

    Article  Google Scholar 

  39. Popovtzer R, Neufeld T, Ron EZ et al (2006) Electrochemical detection of biological reactions using a novel nano-bio-chip array. Sensor Actuat B-Chem 119:664

    Article  CAS  Google Scholar 

  40. Samarskii AA (2001) The theory of difference schemes. Marcel Dekker, New York-Basel

    Book  Google Scholar 

  41. Schulmeister T (1990) Mathematical modeling of the dynamic behavior of amperometric enzyme electrodes. Selective Electrode Rev 12:203

    Google Scholar 

  42. Schulmeister T, Pfeiffer D (1993) Mathematical modelling of amperometric enzyme electrodes with perforated membranes. Biosens Bioelectron 8:75

    Article  CAS  Google Scholar 

  43. Smith JM, Szathmary E (1996) On the likelihood of habitable worlds. Nature 384:107

    Article  CAS  Google Scholar 

  44. Suzuki H (2000) Advances in the microfabrication of electrochemical sensors and systems. Electroanal 12:703

    Article  CAS  Google Scholar 

  45. Ivanauskas F, Kaunietis I, Laurinavicius V et al (2005) Computer simulation of the steady state currents at enzyme doped carbon paste electrode. J Math Chem 38:355

    Article  CAS  Google Scholar 

  46. Briggs GE, Haldane JBS (1925) A note on the kinetics of enzyme action. Biochem J 19:338

    CAS  Google Scholar 

  47. Ikeda T (1995) Enzyme-modified electrodes with bioelectrocatalytic function. Bunsuki Kagaku 44:333

    CAS  Google Scholar 

  48. Matuszewski W, Trojanowicz M (1988) Graphite paste-based enzymatic glucose electrode for flow-injection analysis. Analyst 113:735

    Article  CAS  Google Scholar 

  49. Mulchandani A, Rogers K (eds) (1998) Enzyme & microbial biosensors: techniques and protocols. Methods in biotechnology. Humana Press, Totowa, New Jersey

    Google Scholar 

  50. Wang J, Liu J, Cepra G (1997) Thermal stabilization of enzymes immobilized within carbon paste electrodes. Anal Chem 69:3124

    Article  CAS  Google Scholar 

  51. Mello LD, Kubota LT (2002) Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 77:237

    Article  CAS  Google Scholar 

  52. Wanekaya AK, Chen W, Mulchandani A (2008) Recent biosensing developments in environmental security. J Environ Monitor 10:703

    Article  CAS  Google Scholar 

  53. Amine A, Kauffmann JM, Guilbault GG (1993) Characterization of mixed enzyme-mediator-carbon paste electrodes. Anal Lett 26:1281

    CAS  Google Scholar 

  54. Hale PD, Lan HL, Boguslavsky LI et al (1991) Amperometric glucose sensors based on ferrocene-modified poly(ethylene oxide) and glucose oxidase. Anal Chim Acta 251:121

    Article  CAS  Google Scholar 

  55. Kulys J, Hansen HE, Buch-Rasmussen T et al (1994) Glucose biosensor based on the incorporation of Meldola blue and glucose oxidase within carbon paste. Anal Chim Acta 288:193

    Article  CAS  Google Scholar 

  56. Kulys J, Hansen HE (1994) Carbon-paste biosensors array for long-term glucose measurement. Biosen Bioelectr 9:491

    Article  CAS  Google Scholar 

  57. Kulys J, Hansen HE (1995) Long-term response of an integrated carbon paste based glucose biosensor. Anal Chim Acta 303:285

    Article  CAS  Google Scholar 

  58. Lawrence NS, Deo RP, Wang J (2004) Biocatalytic carbon paste sensors based on a mediator pasting liquid. Anal Chem 77:3735

    Article  CAS  Google Scholar 

  59. Liang JF, Li YT, Yang VC (2000) Biomedical application of immobilized enzymes. J Pharm Sci 89:979

    Article  CAS  Google Scholar 

  60. Miscoria SA, Barrera GD, Rivas GA (2005) Enzymatic biosensor based on carbon paste electrodes modified with gold nanoparticles and polyphenol oxidase. Electroanal 17:1578

    Article  CAS  Google Scholar 

  61. Mizutani F, Yabuki S, Okuda A, Katsura T (1991) Glucose-sensing electrode based on carbon paste containing ferrocene and polyethylene glycol-modified enzyme. Bull Chem Soc Jpn 64:2849

    Article  CAS  Google Scholar 

  62. Mizutani F (1999) Application of enzyme-modified electrodes to biosensors. Bunseki Kagaku 48:809

    CAS  Google Scholar 

  63. Pandey PC, Kayastha AM, Pandey V (1992) Amperometric enzyme sensor for glucose based on graphite paste-modified electrodes. Appl Bioch Biotech 33:139

    Article  CAS  Google Scholar 

  64. Sakura S, Buck RP (1992) Amperometric processes with glucose oxidase embedded in the electrode. Bioelect Bioenerg 28:387

    Article  CAS  Google Scholar 

  65. Schachl K, Turkušić E, Komersová A et al (2002) Amperometric determination of glucose with a carbon paste biosensor. Collect Czech Chem Commun 67:302

    Article  CAS  Google Scholar 

  66. Wang J (2001) Glucose biosensors: 40 years of advances and challenges. Electroanal 13:983

    Article  CAS  Google Scholar 

  67. Wu BL, Zhang GM, Zhang Y, Shuang SM, Choi MMF (2005) Measurement of glucose concentrations in human plasma using a glucose biosensor. Anal Biochem 340:181

    Article  CAS  Google Scholar 

  68. Suzuki H, Arakawa H, Karube I (2001) Fabrication of a sensing module using micromachined biosensors. Biosens Bioelectron 16:725

    Article  CAS  Google Scholar 

  69. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensor Actuat B-Chem 1:244

    Article  Google Scholar 

  70. Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623

    Google Scholar 

  71. Urban PL, Goodall DM, Bruce NC (2001) Biosensor microsystems. Sens Update 8:189

    CAS  Google Scholar 

  72. Urban PL, Goodall DM, Bruce NC (2006) Enzymatic microreactors in chemical analysis and kinetic studies. Biotechnol Adv 24:42

    Article  CAS  Google Scholar 

  73. Vojinovic V, Esteves FMF, Cabral JMS, Fonseca LP (2006) Bienzymatic analytical microreactors for glucose, lactate, ethanol, galactose and l-amino acid monitoring in cell culture media. Anal Chim Acta 565:240

    Article  CAS  Google Scholar 

  74. Zhang Q, Xu JJ, Chen HY (2006) Glucose microfluidic biosensors based on immobilizing glucose oxidase in poly(dimethylsiloxane) electrophoretic microchips. J Chromatogr A 1135:122

    Article  CAS  Google Scholar 

  75. Whitaker S (1999) The method of volume averaging. Kluwer, Boston

    Google Scholar 

  76. Hobbs DW (1999) Aggregate influence on chloride ion diffusion into concrete. Cem Concr Res 29:1995

    Article  CAS  Google Scholar 

  77. Kalnin JR, Kotomin EA, Maier J (2002) Calculations of the effective diffusion coefficient for inhomogeneous media. J Phys Chem Solids 63:449

    Article  CAS  Google Scholar 

  78. Xi Y, Bazant ZP (1999) Modeling chloride penetration in saturated concrete. J Mater Civil Eng 11:58

    Article  CAS  Google Scholar 

  79. Baronas V, Ivanauskas F, Kulys J (1999) Modeling a biosensor based on the heterogeneous microreactor. J Math Chem 25:245

    Article  CAS  Google Scholar 

  80. Lide DR (ed) (2007-2008) Handbook of chemistry and physics, 88th edn. CRC Press, Boca Raton

    Google Scholar 

  81. Weibel MK, Bright HJ (1971) The glucose oxidase mechanism. J Biol Chem 246:2734

    CAS  Google Scholar 

  82. Zhu ZQ, Zhang J, Zhu JZ (2005) An overview of Si-based biosensors. Sensor Lett 3:71

    Article  CAS  Google Scholar 

  83. Deslous C, Gabrielli C, Keddam M et al (1997) Impedance techniques at partially blocked electrodes by scale deposition. Electrochim Acta 42:1219

    Article  Google Scholar 

  84. Gueshi T, Tokuda K, Matsuda H (1978) Voltammetry at partially covered electrodes. Part I. Chronopotentiometry and chronoamperometry at model electrodes. J Electroanal Chem 89:247

    CAS  Google Scholar 

  85. Wightman RM, Wipf DO (1989) Voltammetry at ultramicroelectrodes. In: Bard AJ (ed) Electroanalytical chemistry, vol 15. Marcel Dekker, New York, pp 267–353

    Google Scholar 

  86. Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, London

    Google Scholar 

  87. Nernst W (1904) Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z Phys Chem 47:52

    CAS  Google Scholar 

  88. Wang J (2000) Analytical electrochemistry, 2nd edn. Wiley, New-York

    Google Scholar 

  89. Fraser DM (ed) (1997) Biosensors in the body: continuous in vivo monitoring. Wiley, Chichester

    Google Scholar 

  90. Guilbault GG (1980) Analytical uses of immobilized enzymes. Marcel Dekker, New York

    Google Scholar 

  91. Scheller F, Schubert F (1992) Biosensors. Elsevier, Amsterdam

    Google Scholar 

  92. Ivanauskas F, Baronas R (2008) Numerical simulation of a plate-gap biosensor with an outer porous membrane. Simul Model Pract Th 16:962

    Article  Google Scholar 

  93. Somasundrum M, Aoki K (2002) The steady-state current at microcylinder electrodes modified by enzymes immobilized in conducting or non-conducting material. J Electroanal Chem 530:40

    Article  CAS  Google Scholar 

  94. Song M-J, Yun D-H, Jin J-H et al (2006) Steady state kinetics of cyclic conversions of substrate in amperometric bienzyme sensors. Jpn J Appl Phys 45:7197

    Article  CAS  Google Scholar 

  95. Laurinavicius V, Razumiene J, Ramanavicius A, Ryabov AD (2004) Wiring of PQQ-dehydrogenases. Biosens Bioelectron 20:1217

    Article  CAS  Google Scholar 

  96. Baeumner AJ, Jones C, Wong CY, Price A (2004) A generic sandwich-type biosensor with nanomolar detection limits. Anal Bioanal Chem 378:1587

    Article  CAS  Google Scholar 

  97. Bergel A, Comtat M (1984) Theoretical evaluation of transient responses of an amperometric enzyme electrode. Anal Chem 56:2904

    Article  CAS  Google Scholar 

  98. Frew JE, Hill HO (1987) Electrochemical biosensors. Anal Chem 59:933A

    CAS  Google Scholar 

  99. Pfeiffer D, Scheller FW, Setz K, Schubert F (1993) Amperometric enzyme electrodes for lactate and glucose determinations in highly diluted and undiluted media. Anal Chim Acta 281:489

    Article  CAS  Google Scholar 

  100. Scheller FW, Pfeiffer D (1978) Enzyme electrodes. Z Chem 18:50

    CAS  Google Scholar 

  101. Arshak K, Jafer E, McDonagh D (2007) Modeling and simulation of a wireless microsensor data acquisition system using PCM techniques. Simul Model Pract Th 15:764

    Article  Google Scholar 

  102. Corcuera JRD, Cavalieri R, Powers J, Tang J (2004) Amperometric enzyme biosensor optimization using mathematical modeling. In: Proceedings of the 2004 ASAE/Csae Annual International Meeting, Paper No. 047030 American Society of Agricultural Engineers, Ottawa

    Google Scholar 

  103. Ferreira LS, Souza MBD, Trierweiler JO et al (2003) Aspects concerning the use of biosensors for process control: experimental and simulation investigations.Comp Chem Eng 27:1165

    Google Scholar 

  104. Stamatin I, Berlic C, Vaseashta A (2006) On the computer-aided modeling of analyte-receptor interactions for an efficient sensor design. Thin Solid Films 495:312

    Article  CAS  Google Scholar 

  105. Wu X, Detzel CJ, Van Wie BJ, Haarsma SJ, Kidwel DA (2004) Model-based optimization of a conductive matrix enzyme electrode. Biotechnol Bioeng 88:135

    Article  CAS  Google Scholar 

  106. Baronas R, Ivanauskas F, Kulys J (2007) Computational modeling of amperometric enzyme electrodes with selective and perforated membranes. In: Simos TE, Maroulis G (ed) Computation in modern science and engineering: proceedings of the international conference on computational methods in science and engineering 2007 (ICCMSE 2007), vol 2, parts A and B. AIP Press, pp 457–460

    Google Scholar 

  107. Ivanauskas F, Baronas R, Kulys J (2005) Mathematical modeling of biosensors with perforated and selective membranes. Rakenteiden Mekaniikka - J Struct Mech 38:63

    Google Scholar 

  108. Lyons MEG, Murphy J, Rebouillat S (2000) Theoretical analysis of time dependent diffusion, reaction and electromigration in membranes. J Solid State Electrochem 4:458

    Article  CAS  Google Scholar 

  109. Turner APF, Karube I, Wilson GS (1987) Biosensors: fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romas Baronas .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baronas, R., Ivanauskas, F., Kulys, J. (2010). Modeling Biosensors of Complex Geometry. In: Mathematical Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3243-0_9

Download citation

Publish with us

Policies and ethics