Advertisement

Mathematical Modeling of Biosensors

An Introduction for Chemists and Mathematicians

  • Romas Baronas
  • Feliksas Ivanauskas
  • Juozas Kulys

Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 9)

Table of contents

  1. Front Matter
    Pages i-xix
  2. Analytical Modeling of Biosensors

    1. Front Matter
      Pages 1-1
    2. Romas Baronas, Ivanauskas Feliksas, Juozas Kulys
      Pages 3-8
    3. Romas Baronas, Ivanauskas Feliksas, Juozas Kulys
      Pages 9-20
    4. Romas Baronas, Feliksas Ivanauskas, Juozas Kulys
      Pages 21-26
    5. Romas Baronas, Ivanauskas Feliksas, Juozas Kulys
      Pages 27-31
    6. Romas Baronas, Ivanauskas Feliksas, Juozas Kulys
      Pages 33-39
  3. Numerical Modeling of Biosensors

    1. Front Matter
      Pages 42-42
    2. Romas Baronas, Ivanauskas Feliksas, Juozas Kulys
      Pages 43-111
    3. Romas Baronas, Ivanauskas Feliksas, Juozas Kulys
      Pages 113-137
    4. Romas Baronas, Ivanauskas Feliksas, Juozas Kulys
      Pages 139-202
    5. Romas Baronas, Ivanauskas Feliksas, Juozas Kulys
      Pages 203-246
  4. Numerical Methods for Reaction-Diffusion Equations

    1. Front Matter
      Pages 248-248
    2. Romas Baronas, Ivanauskas Feliksas, Juozas Kulys
      Pages 249-291
    3. Romas Baronas, Ivanauskas Feliksas, Juozas Kulys
      Pages 293-315
  5. Back Matter
    Pages 317-334

About this book

Introduction

This book presents biosensor development and modeling from both a chemical and a mathematical point of view. It contains unique modeling methods for catalytical (amperometric, potentiometer and optical) biosensors. It examines processes that occur in the sensors' layers and at their interface, and it provides analytical and numerical methods to solve enzymatic kinetic and diffusion equations. The action of single enzyme as well as polyenzyme biosensors is studied, and the modeling of biosensors that contain perforated membranes and multipart mass transport profiles is critically investigated. Furthermore, it is fully described how signals can be biochemically amplified, how cascades of enzymatic substrate conversion are triggered, and how signals are processed via a chemometric approach and artificial neuronal networks. The results of digital modeling are compared with both proximal analytical solutions and experimental data.

Keywords

Biochemical A Biosensor Biosensors Catalytical Biosensors Diffusion Equation Digital Modeling Enzymatic Kinetic Equation Enzyme Fractal Kinetics Mathematical Model Modeling Numerical Method cells enzymes mathematical modeling

Authors and affiliations

  • Romas Baronas
    • 1
  • Feliksas Ivanauskas
    • 2
  • Juozas Kulys
    • 3
  1. 1.Dept. Mathematics & InformaticsVilnius UniversityVilniusLithuania
  2. 2.Dept. Mathematics & InformaticsVilnius UniversityVilniusLithuania
  3. 3.Fac. Fundamental SciencesVilnius Gediminas Technical UniversityVilniusLithuania

Bibliographic information

Industry Sectors
Pharma
Materials & Steel
Biotechnology
Electronics
Consumer Packaged Goods