Skip to main content

Mono-Layer Mono-Enzyme Models of Biosensors

  • Chapter
  • First Online:
Mathematical Modeling of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 9))

  • 1572 Accesses

Abstract

A membrane biosensor may be considered as an electrode, having a layer of an enzyme applied onto the electrode surface [69]. Consider a scheme where the substrate (S) combines reversibly with the enzyme (E) to form a complex (ES). The complex then dissociates into the reaction product (P) and the enzyme is released [65, 78, 229, 258],

$$\text{ S} + \text{ E} \rightleftarrows \text{ ES} \rightarrow \text{ E} + \text{ P}$$
(1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ames WF (1977) Numerical methods for partial differential equations, 2nd edn. Academic, New-York

    Google Scholar 

  2. Aris R (1975) The mathematical theory of diffusion and reaction in permeable catalysts. The theory of the steady state. Clarendon, Oxford

    Google Scholar 

  3. Baronas R, Ivanauskas F, Kulys J (2002) Modelling dynamics of amperometric biosensors in batch and flow injection analysis. J Math Chem 32:225

    Article  CAS  Google Scholar 

  4. Baronas R, Ivanauskas F, Kulys J (2003) The influence of the enzyme membrane thickness on the response of amperometric biosensors. Sensors 3:248

    Article  CAS  Google Scholar 

  5. Baronas R, Kulys J, Ivanauskas F (2004) Modeling amperometric enzyme electrode with substrate cyclic conversion. Biosens Bioelectron 19:915

    Article  CAS  Google Scholar 

  6. Baronas R, Ivanauskas F, Kulys J (2007) Computational modeling of the behaviour of potentiometric membrane biosensors. J J Math Chem 42:321

    Article  CAS  Google Scholar 

  7. Bartlett PN, Whitaker RG (1987) Electrochemical immobilization of enzymes. Part 1. Theory. J Electroanal Chem 224:27

    Google Scholar 

  8. Bieniasz LK, Britz D (2004) Recent developments in digital simulation of electroanalytical experiments. Polish J Chem 78:1195

    CAS  Google Scholar 

  9. Blaedel WJ, Kissel TR, Boguslaski RC (1972) Kinetic behavior of enzymes immobilized in artificial membranes. Anal Chem 44:2030

    Article  CAS  Google Scholar 

  10. Blaedel WJ, Boguslaski RC (1978) Chemical amplification in analysis: a review. Anal Chem 50:1026

    Article  CAS  Google Scholar 

  11. Briggs GE, Haldane JBS (1925) A note on the kinetics of enzyme action. Biochem J 19:338

    CAS  Google Scholar 

  12. Britz D (2005) Digital simulation in electrochemistry, 3rd edn. Springer, Berlin

    Google Scholar 

  13. Carr PW (1977) Fourier analysis of the transient response of potentiometric enzyme electrodes. Anal Chem 49:799

    Article  CAS  Google Scholar 

  14. Carr PW, Bowers LD (1980) Immobilized enzymes in analytical and clinical chemistry. Wiley, New York

    Google Scholar 

  15. Chaplin MF, Bucke C (1990) Enzyme technology. Cambridge University Press, Cambridge

    Google Scholar 

  16. Chaubey A, Malhotra BD (2002) Mediated biosensors. Biosens Bioelectron 17:441

    Article  CAS  Google Scholar 

  17. Clarc LC, Lyons C (1962) Electrode system for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29

    Article  Google Scholar 

  18. Coche-Guerente L, Labbe P, Mengeaud V (2001) Amplification of amperometric biosensor responses by electrochemical substrate recycling. 3. Theoretical and experimental study of the phenol-polyphenol oxidase system immobilized in Laponite hydrogels and layer-by-layer self-assembled structures. Anal Chem 73:3206

    Google Scholar 

  19. Cornish-Bowden A (2004) Fundamentals of enzyme kinetics, 3rd edn. Portland Press, London

    Google Scholar 

  20. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon, Oxford

    Google Scholar 

  21. Devaux R, Bergel A, Comtat M (1995) Mass transfer with chemical reaction in thin-layer electrochemical reactors. AICHE J 41:1944

    Article  CAS  Google Scholar 

  22. Dixon M (1953) The determination of enzyme inhibitor constants. Biochem J 55:170

    CAS  Google Scholar 

  23. Eggenstein C, Borchardt M, Diekmann C et al (1999) A disposable biosensor for urea determination in blood based on an ammonium-sensitive transducer. Biosens Bioelectron 14:33

    Article  CAS  Google Scholar 

  24. Eggins BR (2002) Chemical sensors and biosensors. Analytical techniques in the sciences. Wiley, Chichester

    Google Scholar 

  25. Guilbault GG (1970) Enzymatic methods of analysis. Pergamon, Oxford

    Google Scholar 

  26. Higham NJ (2002) Accuracy and stability of numerical algorithms, 2nd edn. SIAM, Philadelphia

    Google Scholar 

  27. Kulys JJ (1981) Analytical systems based on immobilized enzymes. Mokslas, Vilnius (in Russian)

    Google Scholar 

  28. Kulys J, Vidziunaite R (2003) Amperometric biosensors based on recombinant laccases for phenols determination. Biosens Bioelectron 18:319

    Article  CAS  Google Scholar 

  29. Kulys F, Baronas R (2006) Modeling of amperometric biosensors in the case of substrate inhibition. Sensors 6:1513

    Article  CAS  Google Scholar 

  30. Lammertyn J, Verboven P, Veraverbeke EA et al (2006) Analysis of fluid flow and reaction kinetics in a flow injection analysis biosensor. Sensor Actuat B-Chem 114:728

    Article  Google Scholar 

  31. Özisik MN (1980) Heat conduction. Wiley, New York

    Google Scholar 

  32. Pickup JC, Thévenot DR (1993) European achievements in glucose sensor research. In: Turner APF (ed) Advances in Biosensors, Supplement 1. JAI Press, London, pp 201–225

    Google Scholar 

  33. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1993) Numerical Recipes in C: The Art of Scientific Computing Cambridge University Press, Cambridge

    Google Scholar 

  34. Ruzicka J, Hansen EH (1988) Flow injection analysis. Wiley, New York

    Google Scholar 

  35. Scheller F, Schubert F (1992) Biosensors. Elsevier, Amsterdam

    Google Scholar 

  36. Schulmeister T, Scheller F (1985) Mathematical treatment of concentration profiles and anodic current for amperometric enzyme electrodes. Anal Chim Acta 170:279

    Article  CAS  Google Scholar 

  37. Diamond D (ed) (1998) Principles of chemical and biological sensors. Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications. Wiley-Interscience, New York

    Google Scholar 

  38. Turner APF, Karube I, Wilson GS (1987) Biosensors: fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

  39. Schulmeister T (1990) Mathematical modeling of the dynamic behavior of amperometric enzyme electrodes. Selective Electrode Rev 12:203

    Google Scholar 

  40. Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333

    CAS  Google Scholar 

  41. Guilbault GG (1980) Analytical uses of immobilized enzymes. Marcel Dekker, New York

    Google Scholar 

  42. Knopf GK, Bassi AS (2007) Smart biosensor technology. CRC Press, New York

    Google Scholar 

  43. Wollenberger U, Lisdat F, Scheller FW (1997) Frontiers in biosensorics 2. Practical applications. Birkhauser Verlag, Basel

    Google Scholar 

  44. Samarskii AA (2001) The theory of difference schemes. Marcel Dekker, New York-Basel

    Book  Google Scholar 

  45. Bartlett PN, Birkin PR, Wallace ENK (1997) Oxidation of β-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes. J Chem Soc, Faraday Trans 93:1951

    Google Scholar 

  46. Kulys J (1981) The development of new analytical systems based on biocatalysts. Anal Lett 14(B6):377

    Google Scholar 

  47. Fuhrmann B, Spohn U (1998) An enzymatic amplification flow injection analysis (FIA) system for the sensitive determination of phenol. Biosens Bioelectron 13:895

    Article  CAS  Google Scholar 

  48. Kulys JJ, Vidziunaite RA (1990) Amperometric enzyme electrodes with chemically amplified response. In: Wise DL (ed) Bioinstrumentation. Butterworths, Boston, pp 1263–1283

    Google Scholar 

  49. Scheller F, Renneberg R, Schubert F (1988) Coupled enzyme reactions in enzyme electrodes using sequence, amplification, competition, and antiinterference principles. In: Mosbach K (ed) Methods in enzymology, vol 137 Academic, New-York pp 29–43

    Google Scholar 

  50. Schubert F, Kirstein D, Schröder KL, Scheller F (1985) Enzyme electrodes with substrate and co-enzyme amplification. Anal Chim Acta 169:391

    Article  CAS  Google Scholar 

  51. Kulys J, Schmid RD (1990) A sensitive enzyme electrode for phenol monitoring. Anal Lett 23:589

    CAS  Google Scholar 

  52. Malinauskas A, Kulys J (1978) Alcohol, lactate and glutamate sensors based on oxidoreductases with regeneration of nicotinamide adenine dinucleotide. Anal Chim Acta 98:31

    Article  CAS  Google Scholar 

  53. Harsanyi G (2000) Sensors in biomedical applications: fundamentals, technology and applications. CRC Press, New York

    Book  Google Scholar 

  54. Rogers KR (1995) Biosensors for environmental applications. Biosens Bioelectron 10:533

    Article  CAS  Google Scholar 

  55. Sorochinskii VV, Kurganov BI (1997) Theoretical principles of the application of potentiometric enzyme electrodes. Appl Biochem Micro 33:116

    Google Scholar 

  56. Spichiger-Keller UE (1998) Chemical sensors and biosensors for medical and biological applications. Wiley-VCH, New York

    Book  Google Scholar 

  57. Schulmeister T (1987) Mathematical treatment of concentration profiles and anodic current of amperometric enzyme electrodes with chemically amplified response. Anal Chim Acta 201:305

    Article  CAS  Google Scholar 

  58. Wang J (2000) Analytical electrochemistry, 2nd edn. Wiley, New-York

    Google Scholar 

  59. Dixon M, Webb EC, Thorne CJR, Tipton KF (1979) Enzymes, 3rd edn. Longman, London

    Google Scholar 

  60. Gufreund H (1995) Kinetics for the life sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romas Baronas .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baronas, R., Ivanauskas, F., Kulys, J. (2010). Mono-Layer Mono-Enzyme Models of Biosensors. In: Mathematical Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3243-0_6

Download citation

Publish with us

Policies and ethics