Skip to main content

Cardiovascular Biology of the A3 Adenosine Receptor

  • Chapter
  • First Online:
A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics

Abstract

The goal of this chapter is to review current theories regarding the potential involvement of the A3 receptor in mediating the actions of adenosine in the cardiovascular system. The Gi protein-coupled A3 adenosine receptor is the last adenosine receptor subtype to be discovered and remains poorly characterized in terms of its molecular biology and biological functions. Recent evidence suggests that the A3 receptor may mediate the actions of adenosine to regulate vascular tone and angiogenesis, either directly or indirectly by stimulating the release of mediators from mast cells. Substantial evidence has accumulated to suggest that the A3 receptor is responsible for some of the beneficial effects of adenosine in reducing injury caused by ischemia and reperfusion. Readers are reminded that the A3 receptor has proven to be the most difficult adenosine receptor subtype to research due to its unique pharmacological properties and unusual species differences in terms of its pharmacology, tissue expression, and biological function. The theories described in this chapter remain controversial and require additional verification as new tools become available to study this fascinating member of the adenosine receptor family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that A3 adenosine receptor agonists produce hypotension in rodents due to the actions of vasoactive mediators released from mast cells. This topic is discussed further in later sections of the book chapter.

References

  • Angello DA, Headrick JP, Coddington NM, Berne RM (1991) Adenosine antagonism decreases metabolic but not functional recovery from ischemia. Am J Physiol 260 1 Pt 2:H193–H200

    Google Scholar 

  • Armstrong S, Ganote CE (1994) Adenosine receptor specificity in preconditioning of isolated rabbit cardiomyocytes: evidence of A3 receptor involvement. Cardiovasc Res 28(7):1049–1056

    Article  PubMed  CAS  Google Scholar 

  • Auchampach JA, Bolli R (1999) Adenosine receptor subtypes in the heart: Therapeutic opportunities and challenges. Am J Physiol 276 3 Pt 2:H1113–H1116

    Google Scholar 

  • Auchampach JA, Jin X, Wan TC, Caughey GH, Linden J (1997a) Canine mast cell adenosine receptors: cloning and expression of the A3 receptor and evidence that degranulation is mediated by the A2B receptor. Mol Pharmacol 52(5):846–860

    PubMed  CAS  Google Scholar 

  • Auchampach JA, Rizvi A, Qiu Y, Tang XL, Maldonado C, Teschner S, Bolli R (1997b) Selective activation of A3 adenosine receptors with N6-(3-iodobenzyl)adenosine-5′-N-methyluronamide protects against myocardial stunning and infarction without hemodynamic changes in conscious rabbits. Circ Res 80(6):800–809

    PubMed  CAS  Google Scholar 

  • Auchampach JA, Ge ZD, Wan TC, Moore J, Gross GJ (2003).A3 adenosine receptor agonist IB-MECA reduces myocardial ischemia–reperfusion injury in dogs. Am J Physiol Heart Circ Physiol 285(2):H607–H613

    Google Scholar 

  • Belardinelli L, Linden J, Berne RM (1989) The cardiac effects of adenosine. Prog Cardiovasc Dis 32(1):73–97

    Article  PubMed  CAS  Google Scholar 

  • Belardinelli L, Shryock JC, Wand SD, Srinivas M (1995) Ionic basis of the electrophysiological actions of adenosine on cardiomyocytes. FASEB 9(5):359–365

    CAS  Google Scholar 

  • Belardinelli L, Shryock JC, Snowdy S, Zhang Y, Monopoli A, Lozza G, Ongini E, Olsson RA, Dennis DM (1998) The A2A adenosine receptor mediates coronary vasodilation. J Pharmacol Exp Ther 284(3):1066–1073

    PubMed  CAS  Google Scholar 

  • Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204(Feb):317–322

    Google Scholar 

  • Black RG Jr, Guo Y, Ge ZD, Murphree SS, Prabhu SD, Jones WK, Bolli R, Auchampach JA (2002) Gene dosage-dependent effects of cardiac-specific overexpression of the A3 adenosine receptor. Circ Res 91(2):165–172

    Article  PubMed  CAS  Google Scholar 

  • Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B (2008) Myocardial ischemic postconditioning against ischemia–reperfusion is impaired in ob/ob mice. Am J Physiol Heart Circ Physiol 295(4):H1580–H1586

    Article  PubMed  CAS  Google Scholar 

  • Button L, Mireylees SE, Germack R, Dickenson JM (2005) Phosphatidylinositol 3-kinase and ERK1/2 are not involved in adenosine A1, A2A or A3 receptor-mediated preconditioning in rat ventricle strips. Exp Physiol 90(5):747–754

    Article  PubMed  CAS  Google Scholar 

  • Carr CS, Hill RJ, Masamune H, Kennedy SP, Knight DR, Tracey WR, Yellon DM (1997) Evidence for a role for both the adenosine A1 and A3 receptors in protection of isolated human atrial muscle against simulated ischaemia. Cardiovasc Res 36(1):52–59

    Article  PubMed  CAS  Google Scholar 

  • Cerniway RJ, Yang Z, Jacobson MA, Linden J, Matherne GP (2001) Targeted deletion of A3 adenosine receptors improves tolerance to ischemia–reperfusion injury in mouse myocardium. Am J Physiol Heart Circ Physiol 281(4):H1751–H1758

    PubMed  CAS  Google Scholar 

  • Chaudary N, Naydenova Z, Shuralyova I, Coe IR (2004) The adenosine transporter, mENT1, is a target for adenosine receptor signaling and protein kinase Cepsilon in hypoxic and pharmacological preconditioning in the mouse cardiomyocyte cell line, HL-1. J Pharmacol Exp Ther 310(3):1190–1198

    Article  PubMed  CAS  Google Scholar 

  • Chen GJ, Harvey BK, Shen H, Chou J, Victor A, Wang Y (2006) Activation of adenosine A3 receptors reduces ischemic brain injury in rodents. J Neurosci Res 84(8):1848–1855

    Article  PubMed  CAS  Google Scholar 

  • Clark AN, Youkey R, Liu X, Jia L, Blatt R, Day YJ, Sullivan GW, Linden J, Tucker AL (2007) A1 adenosine receptor activation promotes angiogenesis and release of VEGF from monocytes. Circ Res 101(11):1130–1138

    Article  PubMed  CAS  Google Scholar 

  • Cross HR, Murphy E, Black RG, Auchampach J, Steenbergen C (2002) Overexpression of A3 adenosine receptors decreases heart rate, preserves energetics, and protects ischemic hearts. Am J Physiol Heart Circ Physiol 283(4):H1562–H1568

    PubMed  CAS  Google Scholar 

  • Das S, Tosaki A, Bagchi D, Maulik N, Das DK (2005) Resveratrol-mediated activation of cAMP response element-binding protein through adenosine A3 receptor by Akt-dependent and -independent pathways. J Pharmacol Exp Ther 314(2):762–769

    Article  PubMed  CAS  Google Scholar 

  • De Jonge R, Out M, Maas WJ, De Jong JW (2002) Preconditioning of rat hearts by adenosine A1 or A3 receptor activation. Eur J Pharmacol 441(3):165–172

    Article  PubMed  Google Scholar 

  • DiMarco JP, Sellers TD, Berne RM, West GA, Belardinelli L (1983) Adenosine: electrophysiologic effects and therapeutic use for terminating paroxysmal supraventricular tachycardia. Circulation 68(6):1254–1263

    PubMed  CAS  Google Scholar 

  • DiMarco JP, Sellers TD, Belardinelli L (1984) Paroxysmal supraventricular tachycardia with Wenckebach block: evidence for re-entry within the upperportion of the atrioventricular node. J Am Coll Cardiol 3(6):1551–1555

    Article  PubMed  CAS  Google Scholar 

  • DiMarco JP, Miles W, Akhtar M, Milstein S, Sharma AD, Platia E, McGovern B, Scheinmman MM, Govier WC (1990) Adenosine for paroxysmal supraventricular tachycardia: dose ranging and comparison with verapamil. Assessment in placebo-controlled, multicenter trials. The Adenosine for PSVT Study Group. Ann Intern Med 113(2):104–110

    Google Scholar 

  • Dobson JG (1978) Reduction by adenosine of the isoproterenol-induced increase in cyclic 3’, 5’-monophosphate formation and glycogen phosphorylase activity in rat heart muscle. Circ Res 43(5):785–792

    Google Scholar 

  • Dougherty C, Barucha J, Schofield PR, Jacobson KA, Liang BT (1998) Cardiac myocytes rendered ischemia resistant by expressing the human adenosine A1 or A3 receptor. FASEB 12(15):1785–1792

    CAS  Google Scholar 

  • Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68(3):213–237

    PubMed  CAS  Google Scholar 

  • Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88(3):1009–1086

    Article  PubMed  CAS  Google Scholar 

  • Dusseau JW, Hutchins PM, Malbasa DS (1986) Stimulation of angiogenesis by adenosine on the chick chorioallantoic membrane. Circ Res 59(2):163–170

    PubMed  CAS  Google Scholar 

  • Ebrahim Z, Yellon DM, Baxter GF (2007) Ischemic preconditioning is lost in aging hypertensive rat heart: independent effects of aging and longstanding hypertension. Exp Gerontol 42(8):807–814

    Article  PubMed  CAS  Google Scholar 

  • Eckle T, Krahn T, Grenz A, Kohler D, Mittelbronn M, Ledent C, Jacobson MA, Osswald H, Thompson LF, Unertl K, Eltzschig HK (2007) Cardioprotection by ecto-5’-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115(12):1581–1590

    Article  PubMed  CAS  Google Scholar 

  • Ely SW, Berne RM (1992) Protective effects of adenosine in myocardial ischemia. Circulation 85(3):893–904

    PubMed  CAS  Google Scholar 

  • Feoktistov I, Biaggioni I (1995) Adenosine A2B receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J Clin Invest 96(4):1979–1986

    Article  PubMed  CAS  Google Scholar 

  • Feoktistov I, Ryzhov S, Goldstein AE, Biaggioni I (2003) Mast cell-mediated stimulation of angiogenesis: cooperative interaction between A2B and A3 adenosine receptors. Circ Res 92(5):485–492

    Article  PubMed  CAS  Google Scholar 

  • Flood A, Headrick JP (2001) Functional characterization of coronary vascular adenosine receptors in the mouse. Br J Pharmacol 133(7):1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Fralix TA, Murphy E, London RE, Steenbergen C (1993) Protective effects of adenosine in the perfused rat heart: changes in metabolism and intracellular ion homeostasis. Am J Physiol 264(4 Pt 1):C986–C994

    PubMed  CAS  Google Scholar 

  • Gan XT, Rajapurohitam V, Haist JV, Chidiac P, Cook MA, Karmazyn M (2005) Inhibition of phenylephrine-induced cardiomyocyte hypertrophy by activation of multiple adenosine receptor subtypes. J Pharmacol Exp Ther 312(1):27–34

    Article  PubMed  CAS  Google Scholar 

  • Gardner NM, Yates L, Broadley KJ (2004) Effects of endogenous adenosine and adenosine receptor agonists on hypoxia-induced myocardial stunning in guinea-pig atria and papillary muscles. J Cardiovasc Pharmacol 43(3):358–368

    Article  PubMed  CAS  Google Scholar 

  • Ge ZD, Peart JN, Kreckler LM, Wan TC, Jacobson MA, Gross GJ, Auchampach JA (2006) Cl-IB-MECA [2-chloro-N6-(3-iodobenzyl)adenosine-5’-N-methylcarboxamide] reduces ischemia/reperfusion injury in mice by activating the A3 adenosine receptor. J Pharmacol Exp Ther 319(3):1200–1210

    Article  PubMed  CAS  Google Scholar 

  • Gerlach E, Deuticke B, Driesbach RH (1963) Der nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel und seine mogliche Bedeutung fur die Coronardurchblutung. Die Naturwissenschaften 50(6):228–229

    Article  CAS  Google Scholar 

  • Germack R, Dickenson JM (2004) Characterization of ERK1/2 signalling pathways induced by adenosine receptor subtypes in newborn rat cardiomyocytes. Br J Pharmacol 141(2):329–339

    Article  PubMed  CAS  Google Scholar 

  • Germack R, Griffin M, Dickenson JM (2004) Activation of protein kinase B by adenosine A1 and A3 receptors in newborn rat cardiomyocytes. J Mol Cell Cardiol 37(5):989–999

    Article  PubMed  CAS  Google Scholar 

  • Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117(1):123–140

    Article  PubMed  CAS  Google Scholar 

  • Giannella E, Mochmann H, Levi R (1997) Ischemic preconditioning prevents the impairment of hypoxic coronary vasodilatation caused by ischemia/reperfusion. Role of adenosine A1/A3 and bradykinin B2 receptor activation. Circ Res 81(3):415–422

    Google Scholar 

  • Grant MB, Tarnuzzer RW, Caballero S, Ozeck MJ, Davis MI, Spoerri PE, Feoktistov I, Biaggioni I, Shryock JC, Belardinelli L (1999) Adenosine receptor activation induces vascular endothelial growth factor in human retinal endothelial cells. Circ Res 85(8):699–706

    PubMed  CAS  Google Scholar 

  • Gross GJ, Peart JN (2003) KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol 285(3):H921–H930

    PubMed  CAS  Google Scholar 

  • Guo Y, Bolli R, Bao W, Wu WJ, Black RG Jr, Murphree SS, Salvatore CA, Jacobson MA, Auchampach JA (2001) Targeted deletion of the A3 adenosine receptor confers resistance to myocardial ischemic injury and does not prevent early preconditioning. J Mol Cell Cardiol 33(4):825–830

    Article  PubMed  CAS  Google Scholar 

  • Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion - a target for cardioprotection. Cardiovasc Res 61(3):372–385

    Google Scholar 

  • Harrison GJ, Cerniway RJ, Peart J, Berr SS, Ashton K, Regan S, Matherne GP, Headrick JP (2002) Effects of A3 adenosine receptor activation and gene knock-out in ischemic-reperfused mouse heart. Cardiovasc Res 53(1):147–155

    Article  PubMed  CAS  Google Scholar 

  • Hausenloy D, Wynne A, Duchen M, Yellon D (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109(14):1714–1717

    Article  PubMed  CAS  Google Scholar 

  • Headrick JP, Willems L, Ashton KJ, Holmgren K, Peart J, Matherne GP (2003) Ischaemic tolerance in aged mouse myocardium: the role of adenosine and effects of A1 adenosine receptor overexpression. J Physiol 549(Pt 3):823–833

    Article  PubMed  CAS  Google Scholar 

  • Hein TW, Belardinelli L, Kuo L (1999) Adenosine A2A receptors mediate coronary microvascular dilation to adenosine: role of nitric oxide and ATP-sensitive potassium channels. J Pharmacol Exp Ther 291(2):655–664

    PubMed  CAS  Google Scholar 

  • Headrick JP, Berne RM (1990) Endothelium-dependent and -independent relaxations to adenosine in guinea pig aorta. Am J Physiol 259(1 Pt 2):H62–H67

    PubMed  CAS  Google Scholar 

  • Hinschen AK, Rose’Meyer RB, Headrick JP (2003). Adenosine receptor subtypes mediating coronary vasodilation in rat hearts. J Cardiovasc Pharmacol 41(1):73–80

    Google Scholar 

  • Hochhauser E, Leshem D, Kaminski O, Cheporko Y, Vidne BA, Shainberg A (2007) The protective effect of prior ischemia reperfusion adenosine A1 or A3 receptor activation in the normal and hypertrophied heart. Interact Cardiovasc Thorac Surg 6(3):363–368

    Article  PubMed  Google Scholar 

  • Hosey MM, McMahon KK, Green RD (1984) Inhibitory adenosine receptors in the heart: characterization by ligand binding studies and effects on beta-adrenergic receptor stimulated adenylyl cyclase and membrane protein phosphorylation. J Mol Cell Cardiol 16(10):931–942

    Article  PubMed  CAS  Google Scholar 

  • Hussain T, Mustafa SJ (1995) Binding of A1 adenosine receptor ligand [3H]8-cyclopentyl-1, 3-dipropylxanthine in coronary smooth muscle. Circ Res 77(1):194–198

    PubMed  CAS  Google Scholar 

  • Isenberg G, Belardinelli L (1984) Ionic basis for the antagonism between adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ Res 55(3):309–325

    PubMed  CAS  Google Scholar 

  • Jenner TL, Rose’Meyer RB (2006) Adenosine A3 receptor mediated coronary vasodilation in the rat heart: changes that occur with maturation. Mech Ageing Dev 127(3):264–273

    Article  PubMed  CAS  Google Scholar 

  • Jin X, Shepherd RK, Duling BR, Linden J (1997) Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J Clin Invest 100(11):2849–2857

    Article  PubMed  CAS  Google Scholar 

  • Jordan JE, Thourani VH, Auchampach JA, Robinson JA, Wang NP, Vinten-Johansen J (1999) A3 adenosine receptor activation attenuates neutrophil function and neutrophilmediated reperfusion injury. Am J Physiol Heart Circ Physiol 277(5 Pt 2): H1895–H1905.

    Article  PubMed  CAS  Google Scholar 

  • Kemp BK, Cocks TM (1999) Adenosine mediates relaxation of human small resistance-like coronary arteries via A2B receptors. Br J Pharmacol 126(8):1796–1800

    Article  PubMed  CAS  Google Scholar 

  • Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC (2000) Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol 278(4):H1218–H1224

    PubMed  CAS  Google Scholar 

  • Kin H, Zatta AJ, Lofye MT, Amerson BS, Halkos ME, Kerendi F, Zhao ZQ, Guyton RA, Headrick JP, Vinten-Johansen J (2005) Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res 67(1):124–133

    Article  PubMed  CAS  Google Scholar 

  • Kodani E, Bolli R, Tang XL, Auchampach JA (2001a) Protection of IB-MECA against myocardial stunning in conscious rabbits is not mediated by the A1 adenosine receptor. Basic Res Cardiol 96(5):487–496

    Article  PubMed  CAS  Google Scholar 

  • Kodani E, Shinmura K, Xuan YT, Takano H, Auchampach JA, Tang XL, Bolli R (2001b) Cyclooxygenase-2 does not mediate late preconditioning induced by activation of adenosine A1 or A3 receptors. Am J Physiol Heart Circ Physiol 281(2):H959–H968

    PubMed  CAS  Google Scholar 

  • Kuno A, Critz SD, Cui L, Solodushko V, Yang XM, Krahn T, Albrecht B, Philipp S, Cohen MV, Downey JM (2007) Protein kinase C protects preconditioned rabbit hearts by increasing sensitivity of adenosine A2B-depdent signalling during early reperfusion. J Mol Cell Cardiol 43(3):262–271

    Article  PubMed  CAS  Google Scholar 

  • Kurachi Y, Nakajima T, Sugimoto T (1986) On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: involvement of GTP-binding proteins. Pflugers Arch 407(3):264–274

    Article  PubMed  CAS  Google Scholar 

  • Laffargue M, Calvez R, Finan P, Trifilieff A, Barbier M, Altruda F, Hirsch E, Wymann MP (2002) Phosphoinositide 3-kinase gamma is an essential amplifier of mast cell function. Immunity 16(3):441–451

    Article  PubMed  CAS  Google Scholar 

  • LaMonica DA, Frohloff N, Dobson JG (1985) Adenosine inhibition of catecholamine-stimulated cardiac membrane adenylate cyclase. Am J Physiol 248(5 Pt 2):H737–H744

    PubMed  CAS  Google Scholar 

  • Lasley RD, Narayan P, Jahania MS, Partin EL, Kraft KR, Mentzer RM Jr (1999) Species-dependent hemodynamic effects of adenosine A3-receptor agonists IB-MECA and Cl-IB-MECA. Am J Physiol 276 6 Pt 2:H2076–H2084

    Google Scholar 

  • Lee JE, Bokoch G, Liang BT (2001) A novel cardioprotective role of RhoA: new signaling mechanism for adenosine. FASEB J 15(11):1886–1894

    Article  PubMed  CAS  Google Scholar 

  • Leibovich SJ, Chen F, Pinhal-Enfield G, Belem PC, Elson G, Rosania A, Ramanathan M, Montesinos C, Jacobson M, Schwarzschild MA, Fink JS, Cronstein B (2002) Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A2A receptor agonists and endotoxin. Am J Pathol 160(6):2231–2244

    PubMed  CAS  Google Scholar 

  • Linden J (1994) Cloned adenosine A3 receptors: pharmacological properties, species differences, and receptor functions. Trends Pharmacol Sci 15(8):298–306

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Fassett J, Xu X, Hu X, Zhu G, French J, Zhang P, Schnermann J, Bache RJ, Chen Y (2008) Adenosine A3 receptor deficiency exerts unanticipated protective effects on the pressure-overloaded left ventricle. Circulation 118(17):1713–1721

    Google Scholar 

  • Maczewski M, Beresewicz A (1998) The role of adenosine and ATP-sensitive potassium channels in the protection afforded by ischemic preconditioning against the post-ischemic endothelial dysfunction in guinea-pig hearts. J Mol Cell Cardiol 30(9):1735–1747

    Article  PubMed  CAS  Google Scholar 

  • Maddock HL, Mocanu MM, Yellon DM (2002a) Adenosine A3 receptor activation protects the myocardium from reperfusion/reoxygenation injury. Am J Physiol Heart Circ Physiol 283(4):H1307–H1313

    PubMed  CAS  Google Scholar 

  • Maddock HL, Broadley KJ, Bril A, Khandoudi N (2002b) Effects of adenosine receptor agonists on guinea-pig isolated working hearts and the role of endothelium and NO. J Pharm Pharmacol 54(6):859–867

    Article  PubMed  CAS  Google Scholar 

  • Maddock HL, Gardner NM, Khandoudi N, Bril A, Broadley KJ (2003) Protection from myocardial stunning by ischaemia and hypoxia with the adenosine A3 receptor agonist, IB-MECA. Eur J Pharmacol 477(3):235–245

    Article  PubMed  CAS  Google Scholar 

  • Maggirwar SB, Dhanraj DN, Somani SM, Ramkumar V (1994) Adenosine acts as an endogenous activator of the cellular antioxidant defense system. Biochem Biophys Res Commun 201(2):508–515

    Article  PubMed  CAS  Google Scholar 

  • Marinovic J, Ljubkovic M, Stadnicka A, Bosnjak ZJ, Bienengraeber M (2008) Role of sarcolemmal ATP-sensitive potassium channel in oxidative stress-induced apoptosis: mitochondrial connection. Am J Physiol Heart Circ Physiol 294(3):H1317–H1325

    Article  PubMed  CAS  Google Scholar 

  • Meininger CJ, Zetter BR (1992) Mast cells and angiogenesis. Semin Cancer Biol 3(2):73–79

    PubMed  CAS  Google Scholar 

  • Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Simioni C, Leung E, Maclennan S, Baraldi PG, Borea PA (2007) Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol Pharmacol 72(2):395–406

    Article  PubMed  CAS  Google Scholar 

  • Miki T, Miura T, Tsuchida A, Nakano A, Hasegawa T, Fukuma T, Shimamoto K (2000) Cardioprotective mechanism of ischemic preconditioning is impaired by postinfarct ventricular remodeling through angiotensin II type 1 receptor activation. Circulation 102(4):458–463

    PubMed  CAS  Google Scholar 

  • Miyazaki K, Komatsu S, Ikebe M, Fenton RA, Dobson JG Jr (2004) Protein kinase Cε and the antiadrenergic action of adenosine in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 287(4): H1721-H1729.

    PubMed  CAS  Google Scholar 

  • Morrison RR, Tan XL, Ledent C, Mustafa SJ, Hofmann PA (2007) Targeted deletion of A2A adenosine receptors attenuates the protective effects of myocardial postconditioning. Am J Physiol Heart Circ Physiol 293(4):H2523–H2529

    Article  PubMed  CAS  Google Scholar 

  • Murphree LJ, Sullivan GW, Marshall MA, Linden J (2005) Lipopolysaccharide rapidly modifies adenosine receptor transcripts in murine and human macrophages: role of NFκB in A2A adenosine receptor induction. Biochem J 391(Pt 3):575–580

    PubMed  CAS  Google Scholar 

  • Norton GR, Woodiwis AJ, McGinn RJ, Lorbar M, Chung ES, Honeyman TW, Fenton RA, Dobson JG, Meyer TE (1999) Adenosine A1 receptor-mediated antiadrenergic effects are modulated by A2A receptor activation in rat heart. Am J Physiol 276(2 Pt 2):H341–H349

    PubMed  CAS  Google Scholar 

  • Park SS, Zhao H, Jang Y, Mueller RA, Xu Z (2006) N6-(3-iodobenzyl)-adenosine-5′-N-methylcarboxamide confers cardioprotection at reperfusion by inhibiting mitochondrial permeability transition pore opening via glycogen synthase kinase 3 beta. J Pharmacol Exp Ther 318(1):124–131.

    Article  CAS  Google Scholar 

  • Parsons M, Young L, Lee JE, Jacobson KA, Liang BT (2000) Distinct cardioprotective effects of adenosine mediated by differential coupling of receptor subtypes to phospholipases C and D. FASEB 14(10):1423–1431

    Article  CAS  Google Scholar 

  • Peart J, Flood A, Linden J, Matherne GP, Headrick JP (2002) Adenosine-mediated cardioprotection in ischemic-reperfused mouse heart. J Cardiovasc Pharmacol 39(1):117–129

    Google Scholar 

  • Peart J, Willems L, Headrick JP (2003) Receptor and non-receptor-dependent mechanisms of cardioprotection with adenosine. Am J Physiol Heart Circ Physiol 284(2):H519–H527

    PubMed  CAS  Google Scholar 

  • Peart JN, Headrick JP (2008) Sustained cardioprotection: exploring unconventional modalities. Vascular Pharmacol 49(2–3):63–70

    Article  CAS  Google Scholar 

  • Philipp S, Yang XM, Cui L, Davis AM, Downey JM, Cohen MV (2006) Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res 70(2):308–314

    Article  PubMed  CAS  Google Scholar 

  • Platts SH, Duling BR (2004) Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx. Circ Res 94(1):77–82

    Article  PubMed  CAS  Google Scholar 

  • Platts SH, Linden J, Duling BR (2003) Rapid modification of the glycocalyx caused by ischemia–reperfusion is inhibited by adenosine A2A receptor activation. Am J Physiol Heart Circ Physiol 284(6):H2360–H2367

    PubMed  CAS  Google Scholar 

  • Przyklenk K, Maynard M, Darling CE, Whittaker P (2008) Aging mouse hearts are refractory to infarct size reduction with post-conditioning. J Am Coll Cardiol 51(14):1393–1398

    Article  PubMed  Google Scholar 

  • Ramkumar V, Stiles GL, Beaven MA, Ali H (1993) The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 268(23):16887–16890

    PubMed  CAS  Google Scholar 

  • Rose’Meyer RB, Hope W (1990) Evidence that A2 purinoceptors are involved in endothelium-dependent relaxation of the rat thoracic aorta. Br J Pharmacol 100(3):576–580

    PubMed  Google Scholar 

  • Rubio R, Ceballos G (2003) Sole activation of three luminal adenosine receptor subtypes in different parts of coronary vasculature. Am J Physiol 284(1):H204–H214

    CAS  Google Scholar 

  • Safran N, Shneyvays V, Balas N, Jacobson KA, Nawrath H, Shainberg A (2001) Cardioprotective effects of adenosine A1 and A3 receptor activation during hypoxia in isolated rat cardiac myocytes. Mol Cell Biochem 217(1–2):143–152

    Article  PubMed  CAS  Google Scholar 

  • Salvatore CA, Tilley SL, Latour AM, Fletcher DS, Koller BH, Jacobson MA (2000) Disruption of the A3 adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem 275(6):4429–4434

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Terata K, Miura H, Toyama K, Loberiza FR Jr, Hatoum OA, Saito T, Sakuma I, Gutterman DD (2005) Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am J Physiol Heart Circ Physiol 288(4):H1633–H1640

    Google Scholar 

  • Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, Ferrari R, Knight R, Latchman D (2001) Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104(3):253–256

    Google Scholar 

  • Schrader J, Baumann G, Gerlach E (1977) Adenosine as inhibitor of myocardial effects of catecholamines. Pflugers Arch 372(1):29–35

    Article  PubMed  CAS  Google Scholar 

  • Schulman D, Latchman DS, Yellon DM (2001) Effect of aging on the ability of preconditioning to protect rat hearts from ischemia–reperfusion injury. Am J Physiol Heart Circ Physiol 281(4):H1630–H1636

    PubMed  CAS  Google Scholar 

  • Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15(9):813–827

    Article  PubMed  CAS  Google Scholar 

  • Shepherd RK, Linden J, Duling BR (1996) Adenosine-induced vasoconstriction in vivo. Role of the mast cell and A3 adenosine receptor. Circ Res 78(4):627–634

    Google Scholar 

  • Shneyvays V, Leshem D, Zinman T, Mamedova LK, Jacobson KA, Shainberg A (2005) Role of adenosine A1 and A3 receptors in regulation of cardiomyocyte homeostasis after mitochondrial respiratory chain injury. Am J Physiol Heart Circ Physiol 288(6):H2792–H2801

    Article  PubMed  CAS  Google Scholar 

  • Shryock JC, Belardinelli L (1997) Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology. Am J Cardiol 79(12A):2–10

    Google Scholar 

  • Song Y, Srinivas M, Belardinelli L (1994) The effects of adenosine on isoproterenol-induced outward currents in cardiac ventricular myocytes. Drug Dev Res 31(4):324 (Abstract)

    Google Scholar 

  • Song Y, Belardinelli L (1996) Electrophysiological and functional effects of adenosine on ventricular myocytes of various mammalian species. Am J Physiol 271(4 Pt 1):C1233–C1243

    PubMed  CAS  Google Scholar 

  • St Hilaire C, Carroll SH, Chen H, Ravid K (2009) Mechanisms of induction of adenosine receptor genes and its functional significance. J Cell Physiol 218(1):35–44

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, King GL, Robinson GS, Ferrara N, Aiello LP (1996) Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Invest Ophthalmol Vis Sci 37(11):2165–2176

    PubMed  CAS  Google Scholar 

  • Takano H, Bolli R, Black RG Jr, Kodani E, Tang XL, Yang Z, Bhattacharya S, Auchampach JA (2001) A1 or A3 adenosine receptors induce late preconditioning against infarction in conscious rabbits by different mechanisms. Circ Res 88(5):520–528

    PubMed  CAS  Google Scholar 

  • Talukder MA, Morrison RR, Jacobson MA, Jacobson KA, Ledent C, Mustafa SJ (2002) Targeted deletion of adenosine A3 receptors augments adenosine-induced coronary flow in isolated mouse heart. Am J Physiol Heart Circ Physiol 282(6):H2183–H2189

    PubMed  CAS  Google Scholar 

  • Tang Z, Diamond MA, Chen JM, Holly TA, Bonow RO, Dasgupta A, Hyslop T, Purzycki A, Wagner J, McNamara DM, Kukulski T, Wos S, Velazquez EJ, Ardlie K, Feldman AM (2007) Polymorphisms in adenosine receptor genes are associated with infarct size in patients with ischemic cardiomyopathy. Clin Pharmacol Ther 82(4):435–440

    Google Scholar 

  • Tawfik HE, Schnermann J, Oldenburg PJ, Mustafa SJ (2005) Role of A1 adenosine receptors in regulation of vascular tone. Am J Physiol Heart Circ Physiol 288(3):H1411–H1416

    Article  PubMed  CAS  Google Scholar 

  • Thourani VH, Nakamura M, Ronson RS, Jordan JE, Zhao ZQ, Levy JH, Szlam F, Guyton RA, Vinten-Johansen J (1999a) Adenosine A3-receptor stimulation attenuates postischemic dysfunction through KATP channels. Am J Physiol 277(1 Pt 2):H228–H235

    PubMed  CAS  Google Scholar 

  • Thourani VH, Ronson RS, Jordan JE, Guyton RA, Vinten-Johansen J (1999b) Adenosine A3 pretreatment before cardioplegic arrest attenuates postischemic cardiac dysfunction. Ann Thorac Surg 67(6):1732–1737

    Article  PubMed  CAS  Google Scholar 

  • Tikh EL, Fenton RA, Dobson JG (2006) Contractile effects of adenosine A1 and A2A receptors in isolated murine hearts. Am J Physiol Heart Circ Physiol 290(1):H348–H356

    Google Scholar 

  • Tilley SL, Wagoner VA, Salvatore CA, Jacobson MA, Koller BH (2000) Adenosine and inosine increase cutaneous vasopermeability by activating A3 receptors on mast cells. J Clin Invest 105(3):361–367

    Article  PubMed  CAS  Google Scholar 

  • Tosaki A, Engelman DT, Engelman RM, Das DK (1996) The evolution of diabetic response to ischemia/reperfusion and preconditioning in isolated working rat hearts. Cardiovasc Res 31(4):526–536

    PubMed  CAS  Google Scholar 

  • Tracey WR, Magee W, Masamune H, Kennedy SP, Knight DR, Buchholz RA, Hill RJ (1997) Selective adenosine A3 receptor stimulation reduces ischemic myocardial injury in the rabbit heart. Cardiovasc Res 33(2):410–415

    Article  PubMed  CAS  Google Scholar 

  • Tracey WR, Magee W, Masamune H, Oleynek JJ, Hill RJ (1998) Selective activation of adenosine A3 receptors with N6-(3-chlorobenzyl)-5’-N-methylcarboxamidoadenosine (CB-MECA) provides cardioprotection via KATP channel activation. Cardiovasc Res 40(1):138–145

    Article  PubMed  CAS  Google Scholar 

  • Tracey WR, Magee WP, Oleynek JJ, Hill RJ, Smith AH, Flynn DM, Knight DR (2003) Novel N6-substituted adenosine 5’-N-methyluronamides with high selectivity for human adenosine A3 receptors reduce ischemic myocardial injury. Am J Physiol Heart Circ Physiol 285(6):H2780–H2787

    PubMed  CAS  Google Scholar 

  • van der Hoeven D, Wan TC, Auchampach JA (2008) Activation of the A3 adenosine receptor suppresses superoxide production and chemotaxis of mouse bone marrow neutrophils. Mol Pharmacol 74(3):685–696

    Article  PubMed  CAS  Google Scholar 

  • van Troostenburg AR, Clark EV, Carey WD, Warrington SJ, Kerns WD, Cohn I, Silverman MH, Bar-Yehuda S, Fong KL, Fishman P (2004) Tolerability, pharmacokinetics and concentration-dependent hemodynamic effects of oral CF101, an A3 adenosine receptor agonist, in healthy young men. Int J Clin Pharmacol Ther Toxicol 42(10):534–542

    Google Scholar 

  • Vinten-Johansen J, Thourani VH, Ronson RS, Jordan JE, Zhao ZQ, Nakamura M, Velez D, Guyton RA (1999) Broad-spectrum cardioprotection with adenosine. Ann Thorac Surg 68(5):1942–1948

    Article  PubMed  CAS  Google Scholar 

  • Wan TC, Ge ZD, Tampo A, Mio Y, Bienengraeber MW, Tracey WR, Gross GJ, Kwok WM, Auchampach JA (2008) The A3 adenosine receptor agonist CP-532, 903 [N6-(2, 5-dichlorobenzyl)-3’-aminoadenosine-5’-N-methylcarboxamide] protects against myocardial ischemia/reperfusion injury via the sarcolemmal ATP-sensitive potassium channel. J Pharmacol Exp Ther 324(1):234–243

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Whitt SP, Rubin LJ, Huxley VH (2005) Differential coronary microvascular exchange responses to adenosine: roles of receptor and microvessel subtypes. Microcirculation 12(4):313–326

    Article  PubMed  CAS  Google Scholar 

  • Willems L, Headrick JP (2007) Contractile effects of adenosine, coronary flow and perfusion pressure in murine myocardium. Pflugers Arch 453(4):433–441

    Article  PubMed  CAS  Google Scholar 

  • Woodiwiss AJ, Honeyman TW, Fenton RA, Dobson LG (1999) Adenosine A2A-receptor activation enhances cardiomyocyte shortening via Ca2+-independent and–dependent mechanisms. Am J Physiol 276(5 Pt 2):H1434–H1441

    PubMed  CAS  Google Scholar 

  • Xi L, Das A, Zhao ZQ, Merino VF, Bader M, Kukreja RC (2008) Loss of myocardial ischemic postconditioning in adenosine A1 and bradykinin B2 receptors gene knockout mice. Circulation 118(14 Suppl):S32–S37

    Article  PubMed  CAS  Google Scholar 

  • Zatta AJ, Matherne GP, Headrick JP (2006) Adenosine receptor-mediated coronary vascular protection in post-ischemic mouse heart. Life Sci 78(21):2426–2437

    Article  PubMed  CAS  Google Scholar 

  • Zhao TC, Kukreja RC (2002) Late preconditioning elicited by activation of adenosine A3 receptor in heart: role of NF-kappa B, iNOS and mitochondrial KATP channel. J Mol Cell Cardiol 34(3):263–277

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Francis CE, Ravid K (1997) An A3-subtype adenosine receptor is highly expressed in rat vascular smooth muscle cells: its role in attenuating adenosine-induced increase in camp. Microvasc Res 54(3):243–252

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Makaritsis K, Francis CE, Gavras H, Ravid K (2000) A role for the A3 adenosine receptor in determining tissue levels of cAMP and blood pressure: studies in knock-out mice. Biochim Biophys Acta 1500(3):280–290

    PubMed  CAS  Google Scholar 

  • Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285(2):H579–H588

    PubMed  CAS  Google Scholar 

  • Zhong H, Shlykov SG, Molina JG, Sanborn BM, Jacobson MA, Tilley SL, Blackburn MR (2003) Activation of murine lung mast cells by the adenosine A3 receptor. J Immunol 171(1):338–345

    PubMed  CAS  Google Scholar 

  • Ziada AM, Hudlicka O, Tyler KR, Wright AJ (1984) The effect of long-term vasodilatation on capillary growth and performance in rabbit heart and skeletal muscle. Cardiovas Res 18(12):724–732

    Google Scholar 

  • Zucchi R, Yu G, Ghelardoni S, Ronca F, Ronca-Testoni S (2001) A3 adenosine receptor ­stimulation modulates sarcoplasmic reticulum Ca2+ release in rat heart. Cardiovasc Res 50(1):56–64.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Headrick, J.P., Peart, J.N., Wan, T.C., Kwok, WM., Auchampach, J.A. (2010). Cardiovascular Biology of the A3 Adenosine Receptor. In: Borea, P. (eds) A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3144-0_10

Download citation

Publish with us

Policies and ethics