Skip to main content

Vascular diversity patterns of forest ecosystem before and after a 43-year interval under changing climate conditions in the Changbaishan Nature Reserve, northeastern China

  • Chapter
Forest Ecology

Abstract

The Changbaishan Nature Reserve (CNR) is the largest protected temperate forest in the world. It was established in 1960 to protect the virgin Korean pine (Pinus koraiensis) mixed hardwood forest, a typical temperate forest of northeast China. Studies of vascular diversity patterns on the north slope of the CNR mountainside forest (800–1700 m a.s.l.) were conducted in 1963 and in 2006. The aim of this comparison was to assess the long-term effects of the protected status on plant biodiversity during the intervening 43 years. The research was carried out in three forest types: mixed coniferous and broad-leaved forest (MCBF), mixed coniferous forest (MCF), and sub-alpine coniferous forest (SCF), characterized by different dominant species. The alpha diversity indicted by species richness and the Shannon–Wiener index were found to differ for the same elevations and forest types after the 43-year interval, while the beta diversity indicated by the Cody index depicted the altitudinal patterns of plant species gain and loss. The floral compositional pattern and the diversity of vascular species were generally similar along altitudinal gradients before and after the 43-year interval, but some substantial changes were evident with the altitude gradient. In the tree layer, the dominant species in 2006 were similar to those of 1963, though diversity declined with altitude. The indices in the three forest types did not differ significantly between 1963 and 2006, and these values even increased in the MCBF and MCF. However, originally dominant species, such as Pinus koraiensis, tended to decline, the proportion of broad-leaved trees increased, and the species turnover in the succession layers showed a trend to shift to higher altitudes. The diversity pattern of the understory fluctuated along the altitudinal gradient due to micro-environmental variations. A comparison of the alpha diversity indices among the three forest types reveals that the diversity of the shrub and herb layer decreased, and some rare and medicinal species disappeared. Meteorological records show that climate has changed significantly in this 43-year intervening period, and information collected from another field survey found that the most severe human disturbances to the CNR forests stemmed from the exploitation of Ginseng roots and Korean pine nuts.

W. Sang and F. Bai are contributed equally to this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JE, Inouye RS (2001) Landscape-scale changes in plant species abundance and biodiversity of a sagebrush steppe over 45 years. Ecol Monogr 71(4):531–556

    Article  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1996) Ecology: individuals populations and communities. Blackwell Scientific, Oxford

    Google Scholar 

  • Bergman E, Ackerman JD, Thompson J, Zimmerman JK (2006) Land-use history affects the distribution of the saprophytic Orchid Wullschlaegelia calcarata in Puerto Rico’s Tabonuco Forest. Biotropica 38(4):492–499. doi:10.1111/j.1744-7429.2006.00167.x

  • Bhattarai KR, Vetaas OR, Grytnes JA (2004) Fern species richness along a central Himalayan elevational gradient, Nepal. J Biogeogr 31:389–400

    Google Scholar 

  • Buker A (2003) Inselbergs in a changing world-global trend. Divers Distrib 9:375–385. doi:10.1046/j.1472-4642.2003.00035.x

    Article  Google Scholar 

  • Carey C, Alexander MA (2003) Climate change and amphibian decline: is there a link? Divers Distrib 9:111–121. doi:10.1046/j.1472-4642.2003.00011.x

    Article  Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen T-J (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159. doi:10.1111/j.1461-0248.2004.00707.x

    Google Scholar 

  • Chapin S III, Matson PA et al (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Chapman RA, Heitzman E, Shelton MGD (2006) Long-term change in forest structure and species composition of an upland oak forest in Arkansas. For Ecol Manage 236:85–92. doi:10.1016/j.foreco.2006.08.341

  • Chen LZ (1963) Study on the structure of Picea jezoensis forest on the western slope of Changbai Mountains. Acta Phytoecol Geobot Sin 1(1–2):69–80

    Google Scholar 

  • Chen LZ, Wang ZW (1999) The impact of human alteration on ecosystem diversity principles. Zhejiang Science and Technology Press, Zhejiang

    Google Scholar 

  • Chen LZ, Bao XC et al (1964) Major forests in various vertical zones on northern slope of Changbai Mountains of Jilin Province. Acta Phytoecol Geobot Sin 2(2):207–225

    Google Scholar 

  • Chen XW, Li BL (2004) Tree diversity change in remaining primary mixed-broadleaved Korean pine forest under climate change and human activities. Biodivers Conserv 13:563–577. doi:10.1023/B:BIOC.0000009490.57334.0a

    Article  Google Scholar 

  • Chi ZW, Zhang FS, Li XY (1981) Preliminary analysis on the climate of the Changbai Mountain area. Res For Ecosyst 2:179–186

    Google Scholar 

  • Clark DA (2002) Are tropical forests an important carbon sink? Reanalysis of the long-term plot data. Ecol Appl 12(1):3–7. doi:10.1890/1051-0761(2002)012[0003:ATFAIC]2.0.CO;2

    Article  Google Scholar 

  • Colwell RK, Lees DC (2000) The mid-domain effect: geometric constrains on the geography of species richness. Trends Ecol Evol 15:70–76. doi:10.1016/S0169-5347(99)01767-X

    Article  PubMed  Google Scholar 

  • Defries R, Hansen A, Newton A, Hansen M (2005) Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol Appl 15(1):19–26. doi:10.1890/03-5258

    Google Scholar 

  • Dupouey JL, Dambrine E, Laffite JD, Moares C (2002) Irreversible impact of past land on forest land use on forest soils and biodiversity. Ecology 83(11):2978–2984

    Google Scholar 

  • Fang JY, Wang ZH, Zhao SQ, Li YK, Yu D, Ni LY, Liu HZ, Da LJ, Tang ZY, Zheng CY (2006) Biodiversity changes in the lakes of the Central Yangtze. Front Ecol Environ 4(7):369–377. doi:10.1890/1540-9295(2006)004[0369:BCITLO]2.0.CO;2

    Google Scholar 

  • Fosaa AM (2004) Biodiversity pattern of vascular plant species in mountain vegetation in the Faroe Islands. Divers Distrib 10(3):217–223. doi:10.1111/j.1366-9516.2004.00080.x

    Article  Google Scholar 

  • Freestone AL, Inouye BD (2006) Dispersal limitation and environmental heterogeneity shape scale-dependent diversity patterns in plant communities. Ecology 87(10):2425–2432. doi:10.1890/0012-9658(2006)87[2425:DLAEHS]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448. doi:10.1038/369448a0

  • Halpin PN (1997) Global climate change and natural-area protection: management responses and research directions. Ecol Appl 7(3):828–843. doi:10.1890/1051-0761(1997)007[0828:GCCANA]2.0.CO;2

    Article  Google Scholar 

  • Hao ZQ (2000) Analysis of plant community diversity and their gradient patterns on the northern slope of Changbai Mountain, Northeast China. PhD thesis. Chinese Academy of Sciences, P.R. China

    Google Scholar 

  • Harborne AR, Mumby PJ, Hedley JD, Zychaluk K, Blackwell PG (2006) Modeling the beta diversity of coral reefs. Ecology 87(11):2871–2881. doi:10.1890/0012-9658(2006)87[2871:MTBDOC]2.0.CO;2

    Google Scholar 

  • He JS, Chen WL (1997) A review of gradient changes in species diversity of land plant communities. Acta Ecol Sin 17(1):91–99

    Google Scholar 

  • Heegaard E (2004) Trends in aquatic macrophyte species turnover in Northern Ireland—which factors determine the spatial distribution of local species turnover? Glob Ecol Biogeogr 13:97–408. doi:10.1111/j.1466-822X.2004.00119.x

    Article  Google Scholar 

  • Hill JL, Curran PJ (2001) Species composition in fragmented forests: conservation implications of changing forest area. Appl Geogr 21:157–174. doi:10.1016/S0143-6228(01)00002-9

    Article  Google Scholar 

  • Hooper DU, Chapin FSIII, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, SetÄlÄ H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35. doi:10.1890/04-0922

    Article  Google Scholar 

  • Huston MA (2005) The three phases of land-use change: implications for biodiversity. Ecol Appl 15(6):1864–1878. doi:10.1890/03-5281

    Article  Google Scholar 

  • Jin YH, Li DQ et al (2005) Quantitative dynamics on natural regeneration of secondary forest during the restoration period in Changbai Mountain area. Natural Sciences Edition. J Nanjing For Univ 29(5):65–68

    Google Scholar 

  • Klanderud K, Totland Ø (2005) Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology 86(8):2047–2054. doi:10.1890/04-1563

    Article  Google Scholar 

  • Körner C (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol Evol 15:513–514. doi:10.1016/S0169-5347(00)02004-8

    Article  Google Scholar 

  • Lertzman KP (1992) Patterns of gap-phase replacement in a subalpine, old-growth forest. Ecology 73:657–669. doi:10.2307/1940772

    Article  Google Scholar 

  • Li J, Gong Q et al (2005) Climatic features of summer temperature in northeast China under warming background. Chin Geogr Sci 15(4):337–342. doi:10.1007/s11769-005-0022-x

    Article  Google Scholar 

  • Li XB, Wang XP et al (2006) Influence of human disturbance on community structure and tree species diversity of secondary forest on northern slope of Mt. Changbai. Sci Silae Sin 42(2):105–110

    Google Scholar 

  • Liu QJ (1997) Structure and dynamics of the subalpine coniferous forest on Changbai Mountain, China. Plant Ecol 132:97–105. doi:10.1023/A:1009705319128

    Article  Google Scholar 

  • Liu QJ, Li XR et al (2005) Monitoring forest dynamics using satellite imagery-a case study in the natural reserve of Changbai Mountain in China. For Ecol Manage 210:25–37. doi:10.1016/j.foreco.2005.02.025

    Article  Google Scholar 

  • Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13. doi:10.1046/j.1466-822x.2001.00229.x

    Article  Google Scholar 

  • Lopes Valle de Britto Rangel TF, Felizola Diniz-Filho JA (2003) Spatial patterns in species richness and the geometric constraint simulation model: a global analysis of mid-domain effect in Falconiformes. Ecologica 24(4);203–207

    Google Scholar 

  • Ma KP (1994) The measurement of community diversity. I: The measurement of α diversity. Chin Biodivers 2(3):162–168

    Google Scholar 

  • Ma KP, Liu YM (1994) The measurement of community diversity. II: The measurement of α diversity. Chin Biodivers 2(4):231–239

    Google Scholar 

  • Ma KP, Huang JH et al (1995) Plant community diversity in Dongling Mountain, Beijing, China. II. Species richness, evenness, and species diversities. Acta Ecol Sin 15:268–277

    Google Scholar 

  • MacArthur RH (1972) Geographical ecology. Harper and Row, New York

    Google Scholar 

  • Miles J, French DD, Xu Z (1983) The primary researcher on the forest succession status of mixed conifer and broad-leaved forest in north slop of Changbai Mountain. Res Forest Ecosyst 3:54–72.

    Google Scholar 

  • Mitchell RJ, Zutter BR, Gjerstad DH, Glover GR, Wood CW (1999) Competition among secondary–successional pine communities: A field study of effects and responses. Ecology 80(3):857–872

    Google Scholar 

  • Moiseev PA, Shiyatov SG (2003) The use of old landscape photographs for studying vegetation dynamics at the treeline ecotone in the Ural Highlands, Russia. In: Nagy L, Grabherr G, KÖrner C, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Berlin, pp 423–436

    Google Scholar 

  • Mouillot D, Titeux A, Migon C, Sandroni V, Frodello, JP, Viale D (2000) Anthropogenic influences on a Mediterranean Nature Reserve: modelling and forecasting. Environ Model Assess 5:185–192. doi:10.1023/A:1011533811237

    Google Scholar 

  • Nogués-Bravo D, Araújo MB, Martinez-Rica JP, Errea MP (2007) Exposure of global mountain systems to climate warming during the 21st Century. Glob Environ Change 11(7):420–428

    Google Scholar 

  • Ohl C, Krauze K, Grünbühel C (2007) Towards an understanding of long-term ecosystem dynamics by merging socio-economic and environmental research Criteria for long-term socio-ecological research sites selection. Ecol Econ 63:383–391. doi:10.1016/j.ecolecon.2007.03.014

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    Article  PubMed  CAS  Google Scholar 

  • Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob Change Biol 13:147–156. doi:10.1111/j.1365-2486.2006.01282.x

    Google Scholar 

  • Pearman PB, Weber D (2007) Common species determine richness patterns in biodiversity indicator taxa. Biol Conserv 138:109–119. doi:10.1016/j.biocon.2007.04.005

    Article  Google Scholar 

  • Phillips OL, Malhi Y, Higuchi N, Laurance WF, Nunez PV et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442. doi:10.1126/science.282.5388.439

    Google Scholar 

  • Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171. doi:10.1126/science.235.4785.167

    Article  PubMed  CAS  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi:10.1038/nature01333

    Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Google Scholar 

  • Scott JM, Davis FW, McGhie G, Wright RG (2001) Nature reserves: Do they capture the full rang of American’s biological diversity? Ecol Appl 11(4):999–1007. doi:10.1890/1051-0761(2001)011[0999:NRDTCT]2.0.CO;2

    Google Scholar 

  • Shang YC (2002) Ordinary ecology. Beijing University Press, Beijing

    Google Scholar 

  • Shao B (1999) Specie diversity in the sub alpine spruce-fir forest community on the north slope of MT. Changbai. Acta Phytoecol Sin 23[Suppl]:47–57

    Google Scholar 

  • Stone R (2006) A threatened nature reserve breaks down Asian borders. Science 313:1379–1380. doi:10.1126/science.313.5792.1379

    Article  PubMed  CAS  Google Scholar 

  • Stromberg JC (2007) Seasonal reversals of upland-riparian diversity gradients in the Sonoran Desert. Divers Distrib 13:70–83

    Google Scholar 

  • Tao Y (1994) Revolution and succession trends of forest vegetation in Changbai Mountain. Res For Ecosyst 7:173–184

    Google Scholar 

  • Thuiller W, Lavorel S, Sykes MT, Araújo MB (2006) Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Divers Distrib 12:49–60. doi:10.1111/j.1366-9516.2006.00216.x

  • Vázquez GJA, Givnish TJ (1998) Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. J Ecol 86:999–1020. doi:10.1046/j.1365-2745.1998.00325.x

    Article  Google Scholar 

  • Walther G, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC et al (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a

    Google Scholar 

  • Wang Z, Xu ZB, Li X, Peng DS, Tan ZX (1980) The main forest type and their structure characteristics (I). Res For Ecosyst 1:25–42

    Google Scholar 

  • Whitmore TC (1998) Potential impact of climatic change on tropical rain forest seedlings and forest regeneration. Clim Change 39:429–438. doi:10.1023/A:1005356906898

    Article  Google Scholar 

  • Wilson MV, Shmidam A (1984) Measuring beta diversity with presence–absence data. J Ecol 72:1055–1064. doi:10.2307/2259551

    Article  Google Scholar 

  • Wu YG, Han JX (1992) The analysis of community structure and nature succession pattern of Korea pine. Res For Ecosyst 6:14–23

    Google Scholar 

  • Wu ZY (1980) The vegetation of China. Science and Technology Press, Beijing

    Google Scholar 

  • Yang X, Xu M (2003) Biodiversity conservation in Changbai Mountain biosphere reserve, northeastern China: status, problem, and strategy. Biodivers Conserv 12:883–903. doi:10.1023/A:1022841107685

    Article  Google Scholar 

  • Zhang SY (1983) Study on succession pattern of secondary forest in Changbai Mountain. Res For Ecosyst 3:44–53

    Google Scholar 

  • Zhang YP, Guo XF et al (1994) Study on tree dynamics of shrub-broadleaved Korean Pine Forest in Changbai Mountain. Res For Ecosyst 7:48–53

    Google Scholar 

  • Zhao SQ, Fang JY et al (2004) Composition, structure and species diversity of plant communities along an altitudinal gradient on the northern slope of Mt. Changbai, Northeast China. Chin Biodivers 12(1):164–173

    Google Scholar 

  • Zhou YL, Li SY (1990) Forests of China. Science Press, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Sang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sang, W., Bai, F. (2008). Vascular diversity patterns of forest ecosystem before and after a 43-year interval under changing climate conditions in the Changbaishan Nature Reserve, northeastern China. In: Van der Valk, A.G. (eds) Forest Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2795-5_10

Download citation

Publish with us

Policies and ethics