Skip to main content

Uncertainties related to the temperature sensitivity of soil carbon decomposition

  • Conference paper
Uncertainties in Environmental Modelling and Consequences for Policy Making

The fate of soil carbon stores in response to global warming is hotly debated as considerable uncertainties remain in forecasts of the temperature sensitivity of soil organic matter decomposition. This is the result of disagreements in the response of heterotrophic respiration and dissolved organic carbon release to temperature. In the case of soil respiration uncertainties are derived from the inclusion of fixed Q10 values of 2 and a variable number of carbon pools in the models. For the soluble carbon no consensus has emerged in relation to the causal factors leading to the observed carbon exports from organic soils. In most predictions soil biology is poorly represented despite current knowledge indicating that warming can induce important changes in below-ground invertebrate populations which could have important consequences for organic matter decomposition and nutrient cycling. Furthermore, the evidence that the adaptation of soil invertebrate populations to changing climates will exacerbate decomposition of long-standing soil carbon reservoirs and diminish the predicted respiration acclimation effects is critical to develop more realistic predictions of the fate of our terrestrial sink.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alm, J., Schulman, L., Walden, J., Nykanen, H., Martikainen, P.J., and Silvola, J., 1999, Carbon balance of a boreal bog during a Year with an exceptionally dry summer, Ecology, 80: 161–174.

    Google Scholar 

  • Bellamy, P.H., Loveland, P.J., Bradley, R.I., Lark, R.M., and Kirk, G.J.D., 2005, Carbon losses from all soils across England and Wales 1978–2003, Nature, 437: 245–248.

    Article  CAS  Google Scholar 

  • Bradford, M.A., Jones, T.H., Bardgett, R.D., Black, H.I.J., Boag, B., Bonkowski, M., Cook, R., Eggers, T., Gange, A.C., Grayston, S.J., Kandeler, E., McCaig, A.E., Newington, J.E., Prosser, J.I., Setälä, H., Staddon, P.L., Tordoff, G.M., Tscherko, D., and Lawton, J.H., 2002, Impacts of soil faunal community composition on model grassland ecosystems, Science, 298: 615–618.

    Article  CAS  Google Scholar 

  • Briones, M.J.I. and Ineson, P., 2002, Use of 14C carbon dating to determine feeding behaviour of enchytraeids, Soil Biology and Biochemistry, 34: 881–884.

    Article  CAS  Google Scholar 

  • Briones, M.J.I., Ineson, P., and Piearce, T.G., 1997, Effects of climate change on soil fauna; responses of enchytraeids, Diptera larvae and tardigrades in a transplant experiment, Applied Soil Ecology, 6: 117–134.

    Article  Google Scholar 

  • Briones, M.J.I., Carreira, J., and Ineson, P., 1998a, Cognettia sphagnetorum (Enchytraeidae) and nutrient cycling in organic soils: a microcosm experiment, Applied Soil Ecology, 9: 289–294.

    Article  Google Scholar 

  • Briones, M.J.I., Ineson, P., and Poskitt, J., 1998b, Climate change and Cognettia sphagneto-rum: effects on carbon dynamics in organic soils, Functional Ecology, 12: 528–535.

    Article  Google Scholar 

  • Briones, M.J.I., Poskitt, J., and Ostle, N., 2004, Influence of warming and enchytraeid activities on soil CO2 and CH4 fluxes, Soil Biology and Biochemistry, 36: 1851–1859.

    Article  CAS  Google Scholar 

  • Briones, M.J.I., Ineson, P., Heinemeyer, A., 2007a, Predicting potential impacts of climate change on the geographical distribution of enchytraeids: a meta-analysis approach, Global Change Biology, 13: 2252–2269.

    Article  Google Scholar 

  • Briones, M.J.I., Ostle, N., and Garnett, M.H., 2007b, Invertebrates increase the sensitivity of non-labile carbon to climate change, Soil Biology and Biochemistry, 39: 816–818.

    Article  CAS  Google Scholar 

  • Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, T., and Valentini, R.E., 2005, Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, 437: 529–533.

    Article  CAS  Google Scholar 

  • Cole, L., Bardgett, R.D., Ineson, P., 2000, Enchytraeid worms (Oligochaeta) enhance mineralisation of carbon in organic upland soils, European Journal of Soil Science, 51: 185–192.

    Article  Google Scholar 

  • Cole, L., Bardgett, R.D., Ineson, P., and Hobbs, P.J., 2002a, Enchytraeid worm (Oligochaeta) influences on microbial community structure, nutrient dynamics and plant growth in blanket peat subject to warming, Soil Biology and Biochemistry, 34: 83–92.

    Article  CAS  Google Scholar 

  • Cole, L., Bardgett, R.D., Ineson, P., and Adamson, J.K., 2002b, Relationships between enchytraeid worms (Oligochaeta), climate change and the release of dissolved organic carbon from blanket peat in northern England, Soil Biology and Biochemistry, 34: 599–607.

    Article  CAS  Google Scholar 

  • Coleman, D.C., Crossley, D.A. Jr., and Hendrix, P.F., 2004, Fundamentals of Soil Ecology, Second Edition, Elsevier Academic Press, Burlington.

    Google Scholar 

  • Connen, F., Leifeld, J., Seth B., and Alewell, C., 2006, Warming mineralises young and old soil carbon equally, Biogeosciences, 3: 515–519.

    Google Scholar 

  • Coulson, J.C. and Whittaker, J.B., 1978, Ecology of moorland animals. In: Production Ecology of British Moors and Montane Grasslands. (Eds. O.W. Heal and D.F. Perkins), pp. 52–93, Springer-Verlag, Berlin.

    Google Scholar 

  • Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., Totterdell, I.J., 2000, Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408: 184–187.

    Article  CAS  Google Scholar 

  • Cramer, W., Bondeau, A., Woodward, F.I., Prentice, I.C., Betts, R.A., Brovkin, V., Cox, P.M., Fisher, V., Foley, J., Friend, A.D., Kucharik, C., Lomas, M.R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C., 2001, Global responses of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic vegetation models, Global Change Biology, 4: 217–227.

    Google Scholar 

  • Davidson, E.A., and Janssens, I.A., 2006, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440: 165–173.

    Article  CAS  Google Scholar 

  • Didden, W.A.M., 1993, Ecology of terrestrial Enchytraeidae, Pedobiologia, 37: 2–29.

    Google Scholar 

  • Eliasson, P.E., McMurtrie, R.E., Pepper, D.A., Strömgren, M., Linder, S., ågren, G.I., 2005, The response of heterotrophic CO2 flux to soil warming, Global Change Biology, 11: 167–181.

    Article  Google Scholar 

  • Evans, C.D., Freeman, C., Monteith, D.T., Reynolds, B., Fenner, N., 2002, Climate change terrestrial export of organic carbon — reply, Nature, 415: 862.

    Article  CAS  Google Scholar 

  • Evans, C.D., Chapman, P.J., Clark, J.M., Monteith, D.T., Cresser, M.S., 2006, Alternative explanations for rising dissolved organic carbon export from organic soils, Global Change Biology, 12: 2044–2053.

    Article  Google Scholar 

  • Fang, C.M., and Moncrieff, J.B., 2001, The dependence of soil CO2 efflux on temperature, Soil Biology and Biochemistry, 33: 155–165.

    Article  CAS  Google Scholar 

  • Fang, C.M., Smith, P., Moncrieff, J.B., and Smith, J.U., 2005, Similar response of labile and resistant soil organic matter pools to changes in temperature, Nature, 433: 57–59.

    Article  CAS  Google Scholar 

  • Fitter, A.H., Self, G.K., Brown, T.K., Bogie, D.S., Graves, J.D., Benham, D., and Ineson, P., 1999, Root production and turnover in an upland grassland suggested to artificial soil warming respond to radiation flux and nutrients, not temperature, Oecologia, 120: 575–581.

    Article  Google Scholar 

  • Fontaine, S., Bardoux, G., Abbadie, L., Mariotti, A., 2004, Carbon input to soil may decrease soil carbon content, Ecology Letters, 7: 314–320.

    Article  Google Scholar 

  • Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., Rumpel, C., 2007, Stability of organic carbon in deeper soil layers controlled by fresh carbon supply, Nature, 450: 277–280.

    Article  CAS  Google Scholar 

  • Forsberg, C., 1992, Will an increased greenhouse impact in Fennoscandia give rise to more humic and coloured lakes? Hydrobiologia, 229: 51–58.

    CAS  Google Scholar 

  • Freeman, C., Evans, C.D., Monteith, D.T., Reynolds, B., Fenner, N., 2001a, Export of organic carbon from peat soils, Nature, 412: 785.

    Article  CAS  Google Scholar 

  • Freeman, C., Ostle, N., Kang, H., 2001b, An enzymic latch on a global carbon store, Nature, 409: 149.

    Article  CAS  Google Scholar 

  • Freeman, C., Fenner, N., Ostle, N.J., Kang H., Dowrick, D.J., Reynolds, B., Lock, M.A., Sleep, D., Hughes, S., Hudson, J., 2004, Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels, Nature, 430: 195–198.

    Article  CAS  Google Scholar 

  • Giardina, C.P., and Ryan, M.G., 2000, Evidence that the decomposition of carbon does not vary with temperature, Nature, 404, 858–861.

    Article  CAS  Google Scholar 

  • Gill, R.A., Polley, H.W., Johnson, H.B., Anderson, L.J., Maherali, H., and Jackson, R.B., 2002, Nonlinear grassland responses to past and future atmospheric CO2, Nature, 417: 279–282.

    Article  CAS  Google Scholar 

  • Giller, K.E., Beare, M.H., Lavelle, P., Izac, A.M.N., and Swift, M.J., 1997, Agricultural intensification, soil biodiversity and agroecosystem function, Applied Soil Ecology, 6: 3–16.

    Article  Google Scholar 

  • Gorham, E., 1991, Northern peatlands – role in the carbon-cycle probable responses to climatic warming, Ecological Applications, 1: 182–195.

    Article  Google Scholar 

  • Grace, J., Rayment, M., 2000, Respiration in the balance, Nature, 404: 819–820.

    Article  CAS  Google Scholar 

  • Graf, A., Weihermüller, L., Huisman, J.A., Herbst, M., Bauer, J., Vereecken, H., 2008, Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies, Biogeosciences, 5: 1175–1188.

    Google Scholar 

  • Gruber, N., Galloway, N., 2008, An Earth-system perspective of the global nitrogen cycle, Nature, 451: 293–296.

    Article  CAS  Google Scholar 

  • Hågvar, S., 1998, The relevance of the Rio-Convention on biodiversity to conserving the biodiversity of soils, Applied Soil Ecology, 9: 1–7.

    Article  Google Scholar 

  • Harrison, A.F., Taylor, K., Scott, A., Poskitt, J., Benham, D., Grace, J., Chaplow, J., Rowland, P., 2008, Potential effects of climate change on DOC release from three different soil types on the Northern Pennines UK: examination using field manipulation experiments, Global Change Biology, 14: 687–702.

    Article  Google Scholar 

  • Hartley, I.P., Heinemeyer, A., and Ineson, P., 2007, Effects of three Years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response, Global Change Biology, 13: 1761–1770.

    Article  Google Scholar 

  • Hartley, I.P., and Ineson, P., 2008, Substrate quality and the temperature sensitivity of soil organic matter decomposition, Soil Biology and Biochemistry, 40: 1567–1574.

    Article  CAS  Google Scholar 

  • Heal, O.W., 1997, Effects of global change on diversity-function relationships in soil. In: Functional Implications of Biodiversity in Soil (Ed. V. Wolters), pp. 27–40, Ecosystems Research Report No. 24, European Commission, Belgium.

    Google Scholar 

  • Heiman, M., and Reichstein, M., 2008, Terrestrial ecosystem carbon dynamics and climate feedbacks, Nature, 451: 289–292.

    Article  CAS  Google Scholar 

  • Holland, E.A., Neff, J.C., Townsend, A.R., and McKeown, B., 2000, Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: implications for models, Global Biogeochemical Cycles, 14: 1137–1151.

    Article  CAS  Google Scholar 

  • Ineson, P., Taylor, K., Harrison, A.F., Poskitt, J., Benham, D.G., Tipping, E., Woof, C., 1998, Effects of climate change on nitrogen dynamics in upland soils. 1. A transplant approach, Global Change Biology, 4: 143–152.

    Article  Google Scholar 

  • IPCC, 2001, In: Climate Change 2001: The Scientific Basis (Eds. J.T. Houghton, B.A. Callander, and S.K. Varney), pp. 1–896, Cambridge University Press896.

    Google Scholar 

  • IPCC, 2007, In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller), Cambridge University Press.

    Google Scholar 

  • Jenkinson, D.S., 1990, The turnover of organic carbon nitrogen in soil, Philosophical Transactions Royal Society B, 329: 361–368.

    Article  CAS  Google Scholar 

  • Kätterer, T., Reichstein, M., Andrén, O., and Lomander, A., 1998, Temperature dependence of organic matter decomposition: a critical review using literature analyzed with different models, Biology and Fertility of Soils, 27: 258–262.

    Article  Google Scholar 

  • Kirschbaum, M.U.F., 2000, Will changes in soil organic carbon act as a positive or negative feedback on global warming, Biogeochemistry, 48: 21–51.

    Article  CAS  Google Scholar 

  • Kirschbaum, M.U.F., 2004, Soil respiration under prolonged soil warming? are rate reductions caused by acclimation or substrate loss? Global Change Biology, 10: 1870–1877.

    Article  Google Scholar 

  • Kirschbaum, M.U.F., 2006, The temperature dependence of organic-matter decomposition – still a topic of debate, Soil Biology Biochemistry 38: 2510–2518.

    Article  CAS  Google Scholar 

  • Knorr, W., Prentice, I.C., House, J.I., Holland, E.A., 2005, Long-term sensitivity of soil carbon turnover to warming, Nature, 433: 298–301.

    Article  CAS  Google Scholar 

  • Lavelle, P., 1996, Diversity of soil fauna ecosystem function, Biology International, 33: 3–16.

    Google Scholar 

  • Lenton, T.M., 2000, Land ocean carbon cycle feedback effects on global warming in a simple Earth system model, Tellus, 52: 1159–1188.

    Article  Google Scholar 

  • Lenton, T.M., and Huntingford, C., 2003, Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model, Global Change Biology, 9: 1333–1352.

    Article  Google Scholar 

  • Liski, J., Ilvesniemi, H., Mäkelä, A., Westman, C.J., 1999, CO2 emissions from soil in response to climatic warming are overestimated-The decomposition of soil organic matter is tolerant of temperature, Ambio, 28: 171–174.

    Google Scholar 

  • Luo, Y.Q., Wan, S.Q., Hui, D.F., Wallace, L.L., 2001, Acclimatization of soil respiration to warming in a tall grass prairie, Nature, 413: 622–625.

    Article  CAS  Google Scholar 

  • Lloyd, J., Taylor, J.A., 1994, On the temperature dependence of soil respiration, Functional Ecology, 8: 315–323.

    Article  Google Scholar 

  • Lundström, U.S., 1993, The role of organic acids in the soil solution chemistry of a podzolized soil, Journal of Soil Science, 44: 121–133.

    Article  Google Scholar 

  • Monteith, D.T., Stoddard J.L., Evans, C.D., de Wit, H.A., Forsius, M., Høgåsen, T., Wilander, A., Skjelkvåle, B.L., Jeffries, D.S., Vuorenmaa, J., Keller, B., Kopácek, J., Vesely, J., 2007, Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry, Nature, 450: 537–541.

    Article  CAS  Google Scholar 

  • Moorhead, D.L., Reynolds, J.F., 1993, Effects of climate-change on decomposition in arctic tussock tundra — a modeling synthesis, Artic Alpine Research, 25: 403–412.

    Article  Google Scholar 

  • Musselman, R.C., Fox, D.G, 1991, A review of role of temperate forests in the global CO2 balance, Journal of Air Waste Management Association, 41: 798–807.

    CAS  Google Scholar 

  • Oechel, W.C., Hastings, S.J., Vourlitis, G., Jenkins, M., Riechers, G., Grulke, N., 1993, Recent change of arctic tundra ecosystems from a net carbon dioxide sink to a source, Nature, 361: 520–523.

    Article  Google Scholar 

  • Oechel, W.C., Vourlitis, G.L., Hastings, S.J., Zulueta, R.C., Hinzman, L., Kane, D., 2000, Acclimation of ecosystem CO2 exchange in Alaska Arctic response to decadal climate warming, Nature, 406: 978–981.

    Article  CAS  Google Scholar 

  • Parton, W.J., D.S. Schimel, C.V. Cole, Ojima, D.S., 1987, Analysis of factors controlling soil organic matter levels in Great Plains grasslands, Soil Science Society of America Journal, 51: 1173–1179.

    CAS  Google Scholar 

  • Pastor, J., Solin, J., Bridgham, S.D., Updegraff, K., Harth, C., Weishampel, P., Dewey, B., 2003, Global warming the export of dissolved organic carbon from boreal peat-lands, Oikos, 100: 380–386.

    Article  Google Scholar 

  • Powlson, D., 2005, Will soil amplify climate change? Nature, 433: 204–205.

    Article  CAS  Google Scholar 

  • Raich, J.W., and Schlesinger, W.H., 1992, The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate, Tellus, 44: 81–99.

    Google Scholar 

  • Reichstein, M., Kätterer, T., Andren, O., Ciais, P., Schulze, E.D., Cramer, W., Papale, D., and Valentini, R., 2005, Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook, Biogeosciences, 2: 317–321.

    Article  CAS  Google Scholar 

  • Rinnan, R., Michelsen, A., Bååth, E., and Jonasson, S., 2007, Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter, Soil Biology and Biochemistry, 39: 3014–3023.

    Article  CAS  Google Scholar 

  • Royal Society, 2001, The role of land carbon links in mitigating global climate change, Policy Document 10/01, 9th July.

    Google Scholar 

  • Sala, O.E., Chapin, F.S. III, Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A., Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M., Wall, D.H., 2000, Global biodiversity scenarios for Year 2100, Science, 287: 1770–1774.

    Article  CAS  Google Scholar 

  • Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M.L., Wofsy, S.C., da Rocha, H.R., de Camargo, P.B., Crill, P., Daube, B.C., de Freitas, H.C., Hutyra, L., Keller, M., Kirchhoff, V., Menton, M., Munger, J.W., Pyle, E.H., Rice, A.H., and Silva, H., 2003, Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses, Science, 302: 1554–1557.

    Article  CAS  Google Scholar 

  • Saleska, S.R., Didan, K., Huete, A.R., da Rocha, H.R., 2007, Amazon forests green-up during 2005 drought, Science, 318: 612.

    Article  CAS  Google Scholar 

  • Sanderman, J., Amundson, R.G., Baldocchi, D.D., 2003, Application of eddy covariance measurements to the temperature dependence of soil organic matter mean residence time, Global Biogeochemical Cycles, 17: 1061–1075.

    Article  CAS  Google Scholar 

  • Sarmiento, J., 2000, Global change: that sinking feeling, Nature, 408: 155–156.

    Article  CAS  Google Scholar 

  • Schimel, D.S., 1995, Terrestrial Ecosystems the carbon cycle, Global Change Biology, 1: 77–91.

    Article  Google Scholar 

  • Schimel, D.S., Braswell, B.H., Holland, E.A., Mckeown, R., Ojima, D.S., Painter, T.H., Parton, W.J., and Townsend, A.R., 1994, Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils, Global Biogeochemical Cycles, 8: 279–293.

    Article  CAS  Google Scholar 

  • Smith, P., Chapman, S.J., Scott, W.A., Black, H.I.J., Wattenbach, M., Milne, R., Campbell, C.D., Lilli, A., Ostle, N., Levy, P.E., Lumsdon, D.G., Millard, P., Towers, W., Zaehle, S., and Smith, J.U., 2007, Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978–2003, Global Change Biology, 13: 2605–2609.

    Article  Google Scholar 

  • Springett, J.A., Brittain, J.E., Springett, B.P., 1970, Vertical movement of Enchytraeidae (Oligochaeta) in moorland soils, Oikos, 21: 16–21.

    Article  Google Scholar 

  • Steffen, W., Noble, I., Canadell, J., Apps, M., Schulze, E.D., Jarvis, P.G., Baldocchi, D., Ciais, P., Cramer, W., Ehleringer, J., Farquhar, G., Field, C.B., Ghazi, A., Gifford, R., Heimann, M., Houghton, R., Kabat, P., Korner, C., Lambin, E., Linder, S., Mooney, H.A., Murdiyarso, D., Post, W.M., Prentice, I.C., Raupach, M.R., Schimel, D.S., Shvidenko, A., Valentini, R., 1998, The terrestrial carbon cycle, implications for the Kyoto protocol. Science, 280: 1393–1394.

    Article  Google Scholar 

  • Swift, M.J., Heal, O.W., and Anderson, J.M., 1979, Decomposition in Terrestrial Ecosystems, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Thornley, J.H.M., Cannell, M.G.R., 2001, Soil carbon storage response to temperature: a h.3ypothesis, Annals of Botany, 87: 591–598.

    Article  CAS  Google Scholar 

  • Tipping, E., Woof, C., Rigg, E., Harrison, A.F., Ineson, P., Taylor, K., Benham, D., Poskitt, J., Rowland, A.P., Bol, R., Harkness, D.D., 1999, Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment, Environment International, 25: 83–95.

    Article  CAS  Google Scholar 

  • Torsvik, V.L., Goksoyr, J., Daae, F.L., Sørheim, R., Michalsen, J., and Salte, K., 1994, Use of DNA analysis to determine the diversity of microbial communities. In: Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities (Eds. K. Ritz, J. Dighton, and K.E. Giller), pp. 39–48, John Wiley and Sons, New York.

    Google Scholar 

  • Tranvik, L.J., Jansson, M., 2002, Climate change – terrestrial export of organic carbon, Nature, 415: 861–862.

    Article  CAS  Google Scholar 

  • Trumbore, S., 2000, Age of soil organic matter soil respiration: radiocarbon constraints on belowground C dynamics, Ecological Applications, 10: 399–411.

    Article  Google Scholar 

  • Trumbore, S.E., Chadwick, O.A., and Amundson, R., 1996, Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change, Science, 272: 393–396.

    Article  CAS  Google Scholar 

  • Tuomi, M., Vanhala, P., Karhu, K., Fritze, H., Liski, J., 2008, Heterotrophic soil respiration – comparison of different models describing its temperature dependence, Ecological Modelling, 211: 182–190.

    Article  Google Scholar 

  • Vanhala, P., Karhu, K., Tuomi, M., Björklöf, K., Fritze, H., and Liski, J., 2008, Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone, Soil Biology and Biochemistry, 40: 1758–1764.

    Article  CAS  Google Scholar 

  • van Hees, P.A.W., Jones, D.L., Finlay, R., Godbold, D.L., and Lundström, U.S,, 2005, The carbon we do not see – the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review, Soil Biology and Biochemistry, 37: 1–13.

    Article  CAS  Google Scholar 

  • Wall, D.H., Bradford, M.A., John, M.G.ST., Trofymow, J.A., Behan-Pelletier, V., Bignell, D.E., Dangerfield, J.M., Parton, W.J., Rusek, J., Voigt, W., Wolters, W., Gardel, H.Z., Ayuke, F.O., Bashford, R., Beljakova, O.I., Bohlen, P.J., Brauman, A., Flemming, S., Henschel, J.R., Johnson, D.L., Jones, T.H., Korakova, M., Kranabetter, J.M., Kutny, L., Lin, K., Maryati, M., Masse, D., Pokarzhevskii, A., Rahman, H., Sabará, M.G., Salamon, J., Swift, M.J., Varela, A., Vasconcelos, H.L., White, D. Zou, X., 2008, Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent, Global Change Biology, 14: 2661–2677.

    Google Scholar 

  • Wallwork, J.A., 1970, Ecology of soil animals, McGraw-Hill, London.

    Google Scholar 

  • Wetherald, R.T. Manabe, S., 1999, Detectability of summer dryness caused by greenhouse warming, Climate Change, 43: 495–511.

    Article  CAS  Google Scholar 

  • Woodwell, G.M., Mackenzie, F.T., Houghton, R.A., Apps, M., Gorham, E., Davidson, E., 1998, Biotic feedbacks in the warming of the Earth, Climate Change, 40: 495–518.

    Article  CAS  Google Scholar 

  • Worrall, F., Burt, T., Shedden, R., 2003, Long-term records of riverine dissolved organic matter, Biogeochemistry, 64: 165–178.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Briones, M.J.I. (2009). Uncertainties related to the temperature sensitivity of soil carbon decomposition. In: Baveye, P.C., Laba, M., Mysiak, J. (eds) Uncertainties in Environmental Modelling and Consequences for Policy Making. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2636-1_14

Download citation

Publish with us

Policies and ethics