Advertisement

Uncertainties related to the temperature sensitivity of soil carbon decomposition

  • Maria J. I. Briones
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

The fate of soil carbon stores in response to global warming is hotly debated as considerable uncertainties remain in forecasts of the temperature sensitivity of soil organic matter decomposition. This is the result of disagreements in the response of heterotrophic respiration and dissolved organic carbon release to temperature. In the case of soil respiration uncertainties are derived from the inclusion of fixed Q10 values of 2 and a variable number of carbon pools in the models. For the soluble carbon no consensus has emerged in relation to the causal factors leading to the observed carbon exports from organic soils. In most predictions soil biology is poorly represented despite current knowledge indicating that warming can induce important changes in below-ground invertebrate populations which could have important consequences for organic matter decomposition and nutrient cycling. Furthermore, the evidence that the adaptation of soil invertebrate populations to changing climates will exacerbate decomposition of long-standing soil carbon reservoirs and diminish the predicted respiration acclimation effects is critical to develop more realistic predictions of the fate of our terrestrial sink.

Keywords

soil organic matter temperature respiration dissolved organic carbon soil biology Q10 carbon pools 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alm, J., Schulman, L., Walden, J., Nykanen, H., Martikainen, P.J., and Silvola, J., 1999, Carbon balance of a boreal bog during a Year with an exceptionally dry summer, Ecology, 80: 161–174.Google Scholar
  2. Bellamy, P.H., Loveland, P.J., Bradley, R.I., Lark, R.M., and Kirk, G.J.D., 2005, Carbon losses from all soils across England and Wales 1978–2003, Nature, 437: 245–248.CrossRefGoogle Scholar
  3. Bradford, M.A., Jones, T.H., Bardgett, R.D., Black, H.I.J., Boag, B., Bonkowski, M., Cook, R., Eggers, T., Gange, A.C., Grayston, S.J., Kandeler, E., McCaig, A.E., Newington, J.E., Prosser, J.I., Setälä, H., Staddon, P.L., Tordoff, G.M., Tscherko, D., and Lawton, J.H., 2002, Impacts of soil faunal community composition on model grassland ecosystems, Science, 298: 615–618.CrossRefGoogle Scholar
  4. Briones, M.J.I. and Ineson, P., 2002, Use of 14C carbon dating to determine feeding behaviour of enchytraeids, Soil Biology and Biochemistry, 34: 881–884.CrossRefGoogle Scholar
  5. Briones, M.J.I., Ineson, P., and Piearce, T.G., 1997, Effects of climate change on soil fauna; responses of enchytraeids, Diptera larvae and tardigrades in a transplant experiment, Applied Soil Ecology, 6: 117–134.CrossRefGoogle Scholar
  6. Briones, M.J.I., Carreira, J., and Ineson, P., 1998a, Cognettia sphagnetorum (Enchytraeidae) and nutrient cycling in organic soils: a microcosm experiment, Applied Soil Ecology, 9: 289–294.CrossRefGoogle Scholar
  7. Briones, M.J.I., Ineson, P., and Poskitt, J., 1998b, Climate change and Cognettia sphagneto-rum: effects on carbon dynamics in organic soils, Functional Ecology, 12: 528–535.CrossRefGoogle Scholar
  8. Briones, M.J.I., Poskitt, J., and Ostle, N., 2004, Influence of warming and enchytraeid activities on soil CO2 and CH4 fluxes, Soil Biology and Biochemistry, 36: 1851–1859.CrossRefGoogle Scholar
  9. Briones, M.J.I., Ineson, P., Heinemeyer, A., 2007a, Predicting potential impacts of climate change on the geographical distribution of enchytraeids: a meta-analysis approach, Global Change Biology, 13: 2252–2269.CrossRefGoogle Scholar
  10. Briones, M.J.I., Ostle, N., and Garnett, M.H., 2007b, Invertebrates increase the sensitivity of non-labile carbon to climate change, Soil Biology and Biochemistry, 39: 816–818.CrossRefGoogle Scholar
  11. Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, T., and Valentini, R.E., 2005, Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, 437: 529–533.CrossRefGoogle Scholar
  12. Cole, L., Bardgett, R.D., Ineson, P., 2000, Enchytraeid worms (Oligochaeta) enhance mineralisation of carbon in organic upland soils, European Journal of Soil Science, 51: 185–192.CrossRefGoogle Scholar
  13. Cole, L., Bardgett, R.D., Ineson, P., and Hobbs, P.J., 2002a, Enchytraeid worm (Oligochaeta) influences on microbial community structure, nutrient dynamics and plant growth in blanket peat subject to warming, Soil Biology and Biochemistry, 34: 83–92.CrossRefGoogle Scholar
  14. Cole, L., Bardgett, R.D., Ineson, P., and Adamson, J.K., 2002b, Relationships between enchytraeid worms (Oligochaeta), climate change and the release of dissolved organic carbon from blanket peat in northern England, Soil Biology and Biochemistry, 34: 599–607.CrossRefGoogle Scholar
  15. Coleman, D.C., Crossley, D.A. Jr., and Hendrix, P.F., 2004, Fundamentals of Soil Ecology, Second Edition, Elsevier Academic Press, Burlington.Google Scholar
  16. Connen, F., Leifeld, J., Seth B., and Alewell, C., 2006, Warming mineralises young and old soil carbon equally, Biogeosciences, 3: 515–519.Google Scholar
  17. Coulson, J.C. and Whittaker, J.B., 1978, Ecology of moorland animals. In: Production Ecology of British Moors and Montane Grasslands. (Eds. O.W. Heal and D.F. Perkins), pp. 52–93, Springer-Verlag, Berlin.Google Scholar
  18. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., Totterdell, I.J., 2000, Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408: 184–187.CrossRefGoogle Scholar
  19. Cramer, W., Bondeau, A., Woodward, F.I., Prentice, I.C., Betts, R.A., Brovkin, V., Cox, P.M., Fisher, V., Foley, J., Friend, A.D., Kucharik, C., Lomas, M.R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C., 2001, Global responses of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic vegetation models, Global Change Biology, 4: 217–227.Google Scholar
  20. Davidson, E.A., and Janssens, I.A., 2006, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440: 165–173.CrossRefGoogle Scholar
  21. Didden, W.A.M., 1993, Ecology of terrestrial Enchytraeidae, Pedobiologia, 37: 2–29.Google Scholar
  22. Eliasson, P.E., McMurtrie, R.E., Pepper, D.A., Strömgren, M., Linder, S., ågren, G.I., 2005, The response of heterotrophic CO2 flux to soil warming, Global Change Biology, 11: 167–181.CrossRefGoogle Scholar
  23. Evans, C.D., Freeman, C., Monteith, D.T., Reynolds, B., Fenner, N., 2002, Climate change terrestrial export of organic carbon — reply, Nature, 415: 862.CrossRefGoogle Scholar
  24. Evans, C.D., Chapman, P.J., Clark, J.M., Monteith, D.T., Cresser, M.S., 2006, Alternative explanations for rising dissolved organic carbon export from organic soils, Global Change Biology, 12: 2044–2053.CrossRefGoogle Scholar
  25. Fang, C.M., and Moncrieff, J.B., 2001, The dependence of soil CO2 efflux on temperature, Soil Biology and Biochemistry, 33: 155–165.CrossRefGoogle Scholar
  26. Fang, C.M., Smith, P., Moncrieff, J.B., and Smith, J.U., 2005, Similar response of labile and resistant soil organic matter pools to changes in temperature, Nature, 433: 57–59.CrossRefGoogle Scholar
  27. Fitter, A.H., Self, G.K., Brown, T.K., Bogie, D.S., Graves, J.D., Benham, D., and Ineson, P., 1999, Root production and turnover in an upland grassland suggested to artificial soil warming respond to radiation flux and nutrients, not temperature, Oecologia, 120: 575–581.CrossRefGoogle Scholar
  28. Fontaine, S., Bardoux, G., Abbadie, L., Mariotti, A., 2004, Carbon input to soil may decrease soil carbon content, Ecology Letters, 7: 314–320.CrossRefGoogle Scholar
  29. Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., Rumpel, C., 2007, Stability of organic carbon in deeper soil layers controlled by fresh carbon supply, Nature, 450: 277–280.CrossRefGoogle Scholar
  30. Forsberg, C., 1992, Will an increased greenhouse impact in Fennoscandia give rise to more humic and coloured lakes? Hydrobiologia, 229: 51–58.Google Scholar
  31. Freeman, C., Evans, C.D., Monteith, D.T., Reynolds, B., Fenner, N., 2001a, Export of organic carbon from peat soils, Nature, 412: 785.CrossRefGoogle Scholar
  32. Freeman, C., Ostle, N., Kang, H., 2001b, An enzymic latch on a global carbon store, Nature, 409: 149.CrossRefGoogle Scholar
  33. Freeman, C., Fenner, N., Ostle, N.J., Kang H., Dowrick, D.J., Reynolds, B., Lock, M.A., Sleep, D., Hughes, S., Hudson, J., 2004, Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels, Nature, 430: 195–198.CrossRefGoogle Scholar
  34. Giardina, C.P., and Ryan, M.G., 2000, Evidence that the decomposition of carbon does not vary with temperature, Nature, 404, 858–861.CrossRefGoogle Scholar
  35. Gill, R.A., Polley, H.W., Johnson, H.B., Anderson, L.J., Maherali, H., and Jackson, R.B., 2002, Nonlinear grassland responses to past and future atmospheric CO2, Nature, 417: 279–282.CrossRefGoogle Scholar
  36. Giller, K.E., Beare, M.H., Lavelle, P., Izac, A.M.N., and Swift, M.J., 1997, Agricultural intensification, soil biodiversity and agroecosystem function, Applied Soil Ecology, 6: 3–16.CrossRefGoogle Scholar
  37. Gorham, E., 1991, Northern peatlands – role in the carbon-cycle probable responses to climatic warming, Ecological Applications, 1: 182–195.CrossRefGoogle Scholar
  38. Grace, J., Rayment, M., 2000, Respiration in the balance, Nature, 404: 819–820.CrossRefGoogle Scholar
  39. Graf, A., Weihermüller, L., Huisman, J.A., Herbst, M., Bauer, J., Vereecken, H., 2008, Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies, Biogeosciences, 5: 1175–1188.Google Scholar
  40. Gruber, N., Galloway, N., 2008, An Earth-system perspective of the global nitrogen cycle, Nature, 451: 293–296.CrossRefGoogle Scholar
  41. Hågvar, S., 1998, The relevance of the Rio-Convention on biodiversity to conserving the biodiversity of soils, Applied Soil Ecology, 9: 1–7.CrossRefGoogle Scholar
  42. Harrison, A.F., Taylor, K., Scott, A., Poskitt, J., Benham, D., Grace, J., Chaplow, J., Rowland, P., 2008, Potential effects of climate change on DOC release from three different soil types on the Northern Pennines UK: examination using field manipulation experiments, Global Change Biology, 14: 687–702.CrossRefGoogle Scholar
  43. Hartley, I.P., Heinemeyer, A., and Ineson, P., 2007, Effects of three Years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response, Global Change Biology, 13: 1761–1770.CrossRefGoogle Scholar
  44. Hartley, I.P., and Ineson, P., 2008, Substrate quality and the temperature sensitivity of soil organic matter decomposition, Soil Biology and Biochemistry, 40: 1567–1574.CrossRefGoogle Scholar
  45. Heal, O.W., 1997, Effects of global change on diversity-function relationships in soil. In: Functional Implications of Biodiversity in Soil (Ed. V. Wolters), pp. 27–40, Ecosystems Research Report No. 24, European Commission, Belgium.Google Scholar
  46. Heiman, M., and Reichstein, M., 2008, Terrestrial ecosystem carbon dynamics and climate feedbacks, Nature, 451: 289–292.CrossRefGoogle Scholar
  47. Holland, E.A., Neff, J.C., Townsend, A.R., and McKeown, B., 2000, Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: implications for models, Global Biogeochemical Cycles, 14: 1137–1151.CrossRefGoogle Scholar
  48. Ineson, P., Taylor, K., Harrison, A.F., Poskitt, J., Benham, D.G., Tipping, E., Woof, C., 1998, Effects of climate change on nitrogen dynamics in upland soils. 1. A transplant approach, Global Change Biology, 4: 143–152.CrossRefGoogle Scholar
  49. IPCC, 2001, In: Climate Change 2001: The Scientific Basis (Eds. J.T. Houghton, B.A. Callander, and S.K. Varney), pp. 1–896, Cambridge University Press896.Google Scholar
  50. IPCC, 2007, In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller), Cambridge University Press.Google Scholar
  51. Jenkinson, D.S., 1990, The turnover of organic carbon nitrogen in soil, Philosophical Transactions Royal Society B, 329: 361–368.CrossRefGoogle Scholar
  52. Kätterer, T., Reichstein, M., Andrén, O., and Lomander, A., 1998, Temperature dependence of organic matter decomposition: a critical review using literature analyzed with different models, Biology and Fertility of Soils, 27: 258–262.CrossRefGoogle Scholar
  53. Kirschbaum, M.U.F., 2000, Will changes in soil organic carbon act as a positive or negative feedback on global warming, Biogeochemistry, 48: 21–51.CrossRefGoogle Scholar
  54. Kirschbaum, M.U.F., 2004, Soil respiration under prolonged soil warming? are rate reductions caused by acclimation or substrate loss? Global Change Biology, 10: 1870–1877.CrossRefGoogle Scholar
  55. Kirschbaum, M.U.F., 2006, The temperature dependence of organic-matter decomposition – still a topic of debate, Soil Biology Biochemistry 38: 2510–2518.CrossRefGoogle Scholar
  56. Knorr, W., Prentice, I.C., House, J.I., Holland, E.A., 2005, Long-term sensitivity of soil carbon turnover to warming, Nature, 433: 298–301.CrossRefGoogle Scholar
  57. Lavelle, P., 1996, Diversity of soil fauna ecosystem function, Biology International, 33: 3–16.Google Scholar
  58. Lenton, T.M., 2000, Land ocean carbon cycle feedback effects on global warming in a simple Earth system model, Tellus, 52: 1159–1188.CrossRefGoogle Scholar
  59. Lenton, T.M., and Huntingford, C., 2003, Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model, Global Change Biology, 9: 1333–1352.CrossRefGoogle Scholar
  60. Liski, J., Ilvesniemi, H., Mäkelä, A., Westman, C.J., 1999, CO2 emissions from soil in response to climatic warming are overestimated-The decomposition of soil organic matter is tolerant of temperature, Ambio, 28: 171–174.Google Scholar
  61. Luo, Y.Q., Wan, S.Q., Hui, D.F., Wallace, L.L., 2001, Acclimatization of soil respiration to warming in a tall grass prairie, Nature, 413: 622–625.CrossRefGoogle Scholar
  62. Lloyd, J., Taylor, J.A., 1994, On the temperature dependence of soil respiration, Functional Ecology, 8: 315–323.CrossRefGoogle Scholar
  63. Lundström, U.S., 1993, The role of organic acids in the soil solution chemistry of a podzolized soil, Journal of Soil Science, 44: 121–133.CrossRefGoogle Scholar
  64. Monteith, D.T., Stoddard J.L., Evans, C.D., de Wit, H.A., Forsius, M., Høgåsen, T., Wilander, A., Skjelkvåle, B.L., Jeffries, D.S., Vuorenmaa, J., Keller, B., Kopácek, J., Vesely, J., 2007, Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry, Nature, 450: 537–541.CrossRefGoogle Scholar
  65. Moorhead, D.L., Reynolds, J.F., 1993, Effects of climate-change on decomposition in arctic tussock tundra — a modeling synthesis, Artic Alpine Research, 25: 403–412.CrossRefGoogle Scholar
  66. Musselman, R.C., Fox, D.G, 1991, A review of role of temperate forests in the global CO2 balance, Journal of Air Waste Management Association, 41: 798–807.Google Scholar
  67. Oechel, W.C., Hastings, S.J., Vourlitis, G., Jenkins, M., Riechers, G., Grulke, N., 1993, Recent change of arctic tundra ecosystems from a net carbon dioxide sink to a source, Nature, 361: 520–523.CrossRefGoogle Scholar
  68. Oechel, W.C., Vourlitis, G.L., Hastings, S.J., Zulueta, R.C., Hinzman, L., Kane, D., 2000, Acclimation of ecosystem CO2 exchange in Alaska Arctic response to decadal climate warming, Nature, 406: 978–981.CrossRefGoogle Scholar
  69. Parton, W.J., D.S. Schimel, C.V. Cole, Ojima, D.S., 1987, Analysis of factors controlling soil organic matter levels in Great Plains grasslands, Soil Science Society of America Journal, 51: 1173–1179.Google Scholar
  70. Pastor, J., Solin, J., Bridgham, S.D., Updegraff, K., Harth, C., Weishampel, P., Dewey, B., 2003, Global warming the export of dissolved organic carbon from boreal peat-lands, Oikos, 100: 380–386.CrossRefGoogle Scholar
  71. Powlson, D., 2005, Will soil amplify climate change? Nature, 433: 204–205.CrossRefGoogle Scholar
  72. Raich, J.W., and Schlesinger, W.H., 1992, The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate, Tellus, 44: 81–99.Google Scholar
  73. Reichstein, M., Kätterer, T., Andren, O., Ciais, P., Schulze, E.D., Cramer, W., Papale, D., and Valentini, R., 2005, Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook, Biogeosciences, 2: 317–321.CrossRefGoogle Scholar
  74. Rinnan, R., Michelsen, A., Bååth, E., and Jonasson, S., 2007, Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter, Soil Biology and Biochemistry, 39: 3014–3023.CrossRefGoogle Scholar
  75. Royal Society, 2001, The role of land carbon links in mitigating global climate change, Policy Document 10/01, 9th July.Google Scholar
  76. Sala, O.E., Chapin, F.S. III, Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A., Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M., Wall, D.H., 2000, Global biodiversity scenarios for Year 2100, Science, 287: 1770–1774.CrossRefGoogle Scholar
  77. Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M.L., Wofsy, S.C., da Rocha, H.R., de Camargo, P.B., Crill, P., Daube, B.C., de Freitas, H.C., Hutyra, L., Keller, M., Kirchhoff, V., Menton, M., Munger, J.W., Pyle, E.H., Rice, A.H., and Silva, H., 2003, Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses, Science, 302: 1554–1557.CrossRefGoogle Scholar
  78. Saleska, S.R., Didan, K., Huete, A.R., da Rocha, H.R., 2007, Amazon forests green-up during 2005 drought, Science, 318: 612.CrossRefGoogle Scholar
  79. Sanderman, J., Amundson, R.G., Baldocchi, D.D., 2003, Application of eddy covariance measurements to the temperature dependence of soil organic matter mean residence time, Global Biogeochemical Cycles, 17: 1061–1075.CrossRefGoogle Scholar
  80. Sarmiento, J., 2000, Global change: that sinking feeling, Nature, 408: 155–156.CrossRefGoogle Scholar
  81. Schimel, D.S., 1995, Terrestrial Ecosystems the carbon cycle, Global Change Biology, 1: 77–91.CrossRefGoogle Scholar
  82. Schimel, D.S., Braswell, B.H., Holland, E.A., Mckeown, R., Ojima, D.S., Painter, T.H., Parton, W.J., and Townsend, A.R., 1994, Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils, Global Biogeochemical Cycles, 8: 279–293.CrossRefGoogle Scholar
  83. Smith, P., Chapman, S.J., Scott, W.A., Black, H.I.J., Wattenbach, M., Milne, R., Campbell, C.D., Lilli, A., Ostle, N., Levy, P.E., Lumsdon, D.G., Millard, P., Towers, W., Zaehle, S., and Smith, J.U., 2007, Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978–2003, Global Change Biology, 13: 2605–2609.CrossRefGoogle Scholar
  84. Springett, J.A., Brittain, J.E., Springett, B.P., 1970, Vertical movement of Enchytraeidae (Oligochaeta) in moorland soils, Oikos, 21: 16–21.CrossRefGoogle Scholar
  85. Steffen, W., Noble, I., Canadell, J., Apps, M., Schulze, E.D., Jarvis, P.G., Baldocchi, D., Ciais, P., Cramer, W., Ehleringer, J., Farquhar, G., Field, C.B., Ghazi, A., Gifford, R., Heimann, M., Houghton, R., Kabat, P., Korner, C., Lambin, E., Linder, S., Mooney, H.A., Murdiyarso, D., Post, W.M., Prentice, I.C., Raupach, M.R., Schimel, D.S., Shvidenko, A., Valentini, R., 1998, The terrestrial carbon cycle, implications for the Kyoto protocol. Science, 280: 1393–1394.CrossRefGoogle Scholar
  86. Swift, M.J., Heal, O.W., and Anderson, J.M., 1979, Decomposition in Terrestrial Ecosystems, Blackwell Scientific Publications, Oxford.Google Scholar
  87. Thornley, J.H.M., Cannell, M.G.R., 2001, Soil carbon storage response to temperature: a h.3ypothesis, Annals of Botany, 87: 591–598.CrossRefGoogle Scholar
  88. Tipping, E., Woof, C., Rigg, E., Harrison, A.F., Ineson, P., Taylor, K., Benham, D., Poskitt, J., Rowland, A.P., Bol, R., Harkness, D.D., 1999, Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment, Environment International, 25: 83–95.CrossRefGoogle Scholar
  89. Torsvik, V.L., Goksoyr, J., Daae, F.L., Sørheim, R., Michalsen, J., and Salte, K., 1994, Use of DNA analysis to determine the diversity of microbial communities. In: Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities (Eds. K. Ritz, J. Dighton, and K.E. Giller), pp. 39–48, John Wiley and Sons, New York.Google Scholar
  90. Tranvik, L.J., Jansson, M., 2002, Climate change – terrestrial export of organic carbon, Nature, 415: 861–862.CrossRefGoogle Scholar
  91. Trumbore, S., 2000, Age of soil organic matter soil respiration: radiocarbon constraints on belowground C dynamics, Ecological Applications, 10: 399–411.CrossRefGoogle Scholar
  92. Trumbore, S.E., Chadwick, O.A., and Amundson, R., 1996, Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change, Science, 272: 393–396.CrossRefGoogle Scholar
  93. Tuomi, M., Vanhala, P., Karhu, K., Fritze, H., Liski, J., 2008, Heterotrophic soil respiration – comparison of different models describing its temperature dependence, Ecological Modelling, 211: 182–190.CrossRefGoogle Scholar
  94. Vanhala, P., Karhu, K., Tuomi, M., Björklöf, K., Fritze, H., and Liski, J., 2008, Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone, Soil Biology and Biochemistry, 40: 1758–1764.CrossRefGoogle Scholar
  95. van Hees, P.A.W., Jones, D.L., Finlay, R., Godbold, D.L., and Lundström, U.S,, 2005, The carbon we do not see – the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review, Soil Biology and Biochemistry, 37: 1–13.CrossRefGoogle Scholar
  96. Wall, D.H., Bradford, M.A., John, M.G.ST., Trofymow, J.A., Behan-Pelletier, V., Bignell, D.E., Dangerfield, J.M., Parton, W.J., Rusek, J., Voigt, W., Wolters, W., Gardel, H.Z., Ayuke, F.O., Bashford, R., Beljakova, O.I., Bohlen, P.J., Brauman, A., Flemming, S., Henschel, J.R., Johnson, D.L., Jones, T.H., Korakova, M., Kranabetter, J.M., Kutny, L., Lin, K., Maryati, M., Masse, D., Pokarzhevskii, A., Rahman, H., Sabará, M.G., Salamon, J., Swift, M.J., Varela, A., Vasconcelos, H.L., White, D. Zou, X., 2008, Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent, Global Change Biology, 14: 2661–2677.Google Scholar
  97. Wallwork, J.A., 1970, Ecology of soil animals, McGraw-Hill, London.Google Scholar
  98. Wetherald, R.T. Manabe, S., 1999, Detectability of summer dryness caused by greenhouse warming, Climate Change, 43: 495–511.CrossRefGoogle Scholar
  99. Woodwell, G.M., Mackenzie, F.T., Houghton, R.A., Apps, M., Gorham, E., Davidson, E., 1998, Biotic feedbacks in the warming of the Earth, Climate Change, 40: 495–518.CrossRefGoogle Scholar
  100. Worrall, F., Burt, T., Shedden, R., 2003, Long-term records of riverine dissolved organic matter, Biogeochemistry, 64: 165–178.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Maria J. I. Briones
    • 1
  1. 1.Departamento de Ecología y Biología AnimalUniversidad de VigoVigoSpain

Personalised recommendations