Skip to main content

Statistics of Adhesion at Nanoscale

  • Chapter
  • First Online:
Adhesion of Cells, Viruses and Nanoparticles

Abstract

As particles are smaller, towards the nanometer range, or when the gaps between surfaces approach the molecular level, it becomes necessary to consider not only the macroscopic i.e. average features of the adhesion, but also the Brownian ­movement and statistical nature of van der Waals bonding which is fluctuating and diffusing very significantly when viewed at the scale of atomic bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts, A.D., Tabor, D., The extrusion of liquids between highly elastic solids, Proc R Soc Lond 325 (1971) 323–345.

    Article  CAS  Google Scholar 

  2. Stefan, M.J., Versuch uber die scheinbare adhesion, Akad Wissen Wien Math Natur 69 (1874) 713–21.

    Google Scholar 

  3. Reynolds, O., On the theory of lubrication and its application to Mr Beauchamp Towers experiments, Phil Trans R Soc Lond 177 (1886) 157–234

    Article  Google Scholar 

  4. Derjaguin, B., Landau, L., Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes,Acta Physico chemica URSS14 (1941) 633.

    Google Scholar 

  5. Roberts A.D., Role of electrical repulsive forces in synovial fluid, Nature 231 (1971) 434–436.

    Article  CAS  Google Scholar 

  6. Israelachvili, J.N. and Adams, G.E., Direct measurement of long range forces between two mica surfaces in aqueous KNO3solutions, Nature 262 (1976) 774–776.

    Article  CAS  Google Scholar 

  7. Israelachvili, J.N. and Adams, G.E., Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm, J Chem Soc Faraday Trans 74 (1978) 975–1001.

    CAS  Google Scholar 

  8. Prieve, D.C., Frej, N.A., Total Internal Reflection Microscopy: A Quantitative Tool for the Measurement of Colloidal Forces, Langmuir 6, 396 (1990) ; Prieve, D.C., Adv Coll Int Sci (1999).

    Google Scholar 

  9. Zocchi, G., Force measurements on single molecular contacts through evanescent wave microscopy, Biophys J 81 (2001) 2946–53.

    Article  CAS  Google Scholar 

  10. Kendall, K., Kinetics of contact between smooth solids, J Adhesion 7 (1974) 55–72.

    Article  Google Scholar 

  11. Kendall, K., Adhesion: Molecules and Mechanics, Science 263 (1994) 1720–25.

    Article  CAS  Google Scholar 

  12. Horn, R.G. and Israelachvili, J.N., Direct measurement of structural forces between two surfaces in a nonpolar liquid, J Chem Phys 75 (1981) 1400–11.

    Article  CAS  Google Scholar 

  13. Christenson, H.K. and Horn, R.G., Direct measurement of the force between solid surfaces in a polar liquid, Chem Phys Lett 98 (1983) 45–48.

    Article  CAS  Google Scholar 

  14. Horn, R.G., Direct observation of the force between two lipid bilayers and observation of their fusion, Biochim Biophys Acta 778 (1984) 224–8.

    Article  CAS  Google Scholar 

  15. Kendall, K., Peel adhesion of solid films-The surface and bulk effects, J Adhesion 5, (1973) 179–202.

    Article  CAS  Google Scholar 

  16. Israelachvili, J.N., Intermolecular and Surface Forces, Academic Press, London 1985, pp.198–201.

    Google Scholar 

  17. Pashley, R.M. and Israelachvili, J.N., Molecular layering of water in thin films between mica surfaces and its relation to hydration forces, J Colloid Interface Sci 101 (1984) 511–23.

    Article  CAS  Google Scholar 

  18. Israelachvili, J.N. and Pashley, R.M., Molecular layering of water at surfaces and origin of repulsive hydration forces, Nature 306 (1983) 249–50.

    Article  CAS  Google Scholar 

  19. Lim, R., O’Shea, S.J., Solvation forces in branched molecular liquids, Phys Rev Lett 88 (2002) 246101–4

    Article  Google Scholar 

  20. Glasstone, S., Laidler, K.J. and Eyring, H., Theory of Rate Processes, McGraw Hill, London, 1941, p. 339.

    Google Scholar 

  21. Krotova, N.A., Kirillova, Y.M. and Deryaguin, B.V., Zhur. Fiz Chim 30 (1956) 1921.

    CAS  Google Scholar 

  22. Derjaguin, B.V., Krotova, N.A. and Smilga, V.P., Adhesion of Solids, Consultants Bureau, London, 1978, ch.2.

    Google Scholar 

  23. Voyutskii, S.S., Autohesion and Adhesion of High Polymers, Wiley Interscience, New York, 1963, ch.1.

    Google Scholar 

  24. Obreimoff, J.W. The splitting strength of mica, Proc R Soc Lond A127 (1930) 290–97.

    Google Scholar 

  25. Johnson, K.R., Kendall, K. and Roberts, A.D., Surface energy and the contact of elastic solids, Proc R Soc Lond A A324 (1971) 301–13.

    Google Scholar 

  26. Kendall, K, The shapes of peeling solid films, J Adhesion 5 (1973) 105–117.

    Article  CAS  Google Scholar 

  27. Drutowski, R.C., Hertzian contact and adhesion of elastomers, J Lub Techn Trans ASME 91 (1969) 732–7.

    Google Scholar 

  28. Kendall, K., Dynamics of slow peeling, Int J Fracture 11 (1975) 3–12.

    Article  CAS  Google Scholar 

  29. Kendall, K., Rolling friction and adhesion between smooth solids, Wear 33 (1975) 351–8.

    Article  Google Scholar 

  30. Milling, A.J., Depletion and structuring of poly (styrene sulfonate) at the silica-water interface J Phys Chem 100 (1996) 8986–93.

    CAS  Google Scholar 

  31. Milling, A.J. and Vincent, B., Depletion forces between silica surfaces in polyacrylic acid, J Chem Soc Faraday Trans 93 (1997) 3179–83.

    Article  CAS  Google Scholar 

  32. Milling, A.J. and Kendall, K., Depletion, Adsorption and structuring of sodium polyacrylate at the water-silica interface 1. an atomic force microscope study, Langmuir 16 (2000) 5106–15.

    CAS  Google Scholar 

  33. Chattellier, X. and Joanny, J-F., Adsorption of polyelectrolyte solutions onto surfaces; a Debye Huckel theory, J Phys II 6 (1996) 1669–86.

    Article  Google Scholar 

  34. Dahlgren, M.A.G., and Leermakers, F.A.M., Depletion zones in polyelectrolyte systems: polydispersity effects and colloid stability, Langmuir 11 (1995) 2996.

    Article  CAS  Google Scholar 

  35. Ruckenstein, E., Manciu, M., Nanodispersions: Interactions, Stability and dynamics, Springer, NY 2010.

    Google Scholar 

  36. Fernandes, G.E., Beltran-Villegas, D.J., Bevan, M.A., Spatially controlled reversible colloidal self-assembly, J Chem Phys 131 (2009) 134705.

    Article  Google Scholar 

  37. Bahukudumbi, P., Bevan, M.A., Imaging energy landscapes with concentrated diffusing colloidal probes, J Chem Phys 126 (2007) 244702.

    Article  Google Scholar 

  38. Kendall, K., Dhir, A., Du, S., A new measure of molecular attractions between nanoparticles near kT adhesion energy, Nanotechnology 20 (2009) 0275701.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Kendall .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kendall, K., Kendall, M., Rehfeldt, F. (2010). Statistics of Adhesion at Nanoscale. In: Adhesion of Cells, Viruses and Nanoparticles. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2585-2_5

Download citation

Publish with us

Policies and ethics