Skip to main content

Macroscopic View of Adhesion for Nanoparticles, Viruses and Cells

  • Chapter
  • First Online:
Adhesion of Cells, Viruses and Nanoparticles

Abstract

In Part I of this book we have considered the several elements required in a description of adhesion. Now let us use these ideas to describe adhesion observations on nanoparticles, viruses and cells in different circumstances.

At scales above 10 μm, where Brownian movement can be largely neglected, adhesion appears macroscopic, steady and static when viewed with the optical microscope. The range of van der Waals forces is negligible and we can use a single parameterWto describe the adhesion. In reflected light, an area of adhesion appears black, in contrast to the non-contacting and non-adhering areas which look brighter. Thus we can identify the‘black contact spot’which represents a true molecular contact where the van der Waals adhesion between the surface molecules is found. Identifying the way in which this black spot changes in size is critical to understanding the adhesion process

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts, A.D., Squeeze films between rubber and glass, J Phys D: Applied Phys 4 (1971) 423–432.

    Article  Google Scholar 

  2. Kendall, K., Kinetics of contact between smooth solids, J Adhesion 7 (1974) 52–72.

    Google Scholar 

  3. Johnson, K.L., Kendall, K. and Roberts, A.D., Surface energy and the contact of elastic solids, Proc R Soc Lond A324 (1971) 301–313.

    Google Scholar 

  4. Kendall, K., Molecular adhesion and its applications, Kluwer New York, 2001.

    Google Scholar 

  5. Hamaker, H.C., The London-van der Waals attraction between spherical particles, Physica 10 (1937) 1058.

    Article  Google Scholar 

  6. Griffith, A.A., The phenomenon of rupture and flow in solids, Phil Trans R Soc Lond A220 (1921) 163–98.

    Article  Google Scholar 

  7. Kendall, K., Crack propagation in lap shear joints, J Phys D:Appl Phys 8 (1975) 512–22.

    Article  CAS  Google Scholar 

  8. Kendall, K., The adhesion and surface energy of elastic solids, J Phys D:Appl Phys, 4 (1971) 1186–95.

    Article  Google Scholar 

  9. Kendall, K., Adhesion: molecules and mechanics, Science 263 (1994) 1720–25.

    Article  CAS  Google Scholar 

  10. Chaudhury, M.K. and Whitesides, G.M., Correlation between surface free energy and surface constitution, Science 255 (1993) 1230–32.

    Article  Google Scholar 

  11. Chaudhury, M.K. and Whitesides, G.M., Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly (dimethylsiloxane) and their chemical derivatives, Langmuir 7 (1991) 1013–25.

    Article  CAS  Google Scholar 

  12. Sirghi, L., Ponti, J., Broggi, F., Rossi, F., Probing elasticity and adhesion of live cells by atomic force microscopy indentation, Euro Biophys J 37 (2008) 935–45

    Article  CAS  Google Scholar 

  13. Radmacher, M., Measuring the elastic properties of living cells by the atomic force microscopy, in ‘Methods in cell biology’ 68 (2002) 67–90, Academic Press NY eds. Jena, B.P. & Horber, J.K.

    Google Scholar 

  14. Zhu, A.P., Fang, N., Chan-Park, M.B., Chan, V., Adhesion contact dynamics of 3T3 fibroblasts on poly (lactide-co-glycoide acid), Surf Modified Photochem Immobil Biomacromol Biomater 27 (2006) 2566–76.

    CAS  Google Scholar 

  15. Sun, M., Graham, J.S., Hagedus, B., Marga, F., Zhang, Y., Forgacs, G., Grandbois, M., Multiple membrane tethers probed by atomic force microscopy, Biophys J, 89 (2005) 432–9.

    Article  Google Scholar 

  16. Capella, B., Dietler, G., Force distance curves by Atomic Force Microscopy, Surface Science Reports 34 (1999) 1–104.

    Article  Google Scholar 

  17. Bowen, W.R., Hilal, N., Lovitt, R.W., Wright, C.J., Colloids Surfaces A136 (1998) 231.

    Google Scholar 

  18. Kendall, K., Control of cracks by interfaces in composites, Proc R Soc A 341 (1975) 409–428.

    Article  Google Scholar 

  19. Kendall, K., Shrinkage and peel strength of adhesive joints, J Phys D:Appl Phys 6 (1973) 1782–87.

    Article  Google Scholar 

  20. Kendall, K., The effects of shrinkage on interfacial cracking in a bonded laminate, J Phys D: Appl Phys 8 (1975) 1722–1732

    Article  Google Scholar 

  21. Rivlin, R.S., Paint Technol 9 (1944) 215–7.

    Google Scholar 

  22. Ghatak, A. Chaudhury, M.K., Adhesion induced instability in thin confined elastic film, Langmuir 19 (2003) 2621–31.

    Article  CAS  Google Scholar 

  23. Ghatak, A., Chaudhury, M.K., Critical confinement and elastic instability in thin solid films, J Adhesion 83 (2007) 679–704

    Article  CAS  Google Scholar 

  24. Kendall, K., Clegg, W.J. and Gregory, R.D., Growth of tied cracks: a model for polymer ­crazing, J Mater Sci Lett 10 (1991) 671–4.

    Article  CAS  Google Scholar 

  25. Dugdale, D.S., Yielding of steel sheets containing slits, J Mech Phys Sol 8 (1960) 100–104.

    Article  Google Scholar 

  26. Bowling, J. and Groves, G.W., Debonding and pull-out of ductile wires from a brittle matrix, J Mater Sci 14 (1979) 431–442.

    Article  CAS  Google Scholar 

  27. Maugis, D., Contact, adhesion and rupture of elastic solids, Springer, Berlin 1999, p191–199.

    Google Scholar 

  28. Costerton, J.W., The Biofilm Primer, Springer Berlin 2007.

    Book  Google Scholar 

  29. Costerton, J.W., Geesey, G.G., and Cheng, K-J., How bacteria stick, Scientific American 238 (1978) 86–95.

    Article  CAS  Google Scholar 

  30. Tsoligkas, A.N., Winn, M., Bowen, J., Overton, T.W., Simmons, M.J.H., Goss, R.J.M., A new approach to generating catalytic biofilms, submitted 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Kendall .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kendall, K., Kendall, M., Rehfeldt, F. (2010). Macroscopic View of Adhesion for Nanoparticles, Viruses and Cells. In: Adhesion of Cells, Viruses and Nanoparticles. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2585-2_4

Download citation

Publish with us

Policies and ethics