Skip to main content

Natural and Synthetic Transmembrane Channels

  • Chapter
  • First Online:
Supramolecular Chemistry
  • 1910 Accesses

Abstract

The reliance of cells on transmembrane processes that import small molecules and export waste is discussed in the context of two mechanisms: transmembrane migration by molecular shuttles and transmembrane channels. Channel selectivity and gating mechanisms (voltage gating, ligand gating, gating by aggregation, gating by pH and membrane tension, and light gating) are explained. The channel architecture for neutral molecules, anions and cations is described. Techniques of structural determination and measuring channel activity (voltage clamping, patch clamping, bilayer, dye release and NMR methods) are described. Transmembrane transport by artificial systems is extensively discussed with examples drawn from both transporting and channel-forming systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  Google Scholar 

  2. Ward ML et al (1978) Crystal and molecular-structure of sodium bromide complex of monensin, C36H62O11·Na+Br–. Acta Cryst Sect B 34:110–115

    Article  Google Scholar 

  3. Neupert-Laves K, Dobler M (1975) Crystal-structure of a K+ complex of valinomycin. Helv Chim Acta 58:432–442

    Article  CAS  Google Scholar 

  4. Sato T et al (1998) Prodigiosins as a new group of H+/Cl−symporters that uncouple proton translocators. J Biol Chem 273:21455–21462

    Article  CAS  Google Scholar 

  5. Doyle DA et al The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Google Scholar 

  6. Niemeyer MI et al (2003) A conserved pore-lining glutamate as a voltage- and chloride-dependent gate in the ClC-2 chloride channel. J Physiol 553:873–879

    Article  CAS  Google Scholar 

  7. Cestèle S, Catterall WA (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82:883–892

    Article  Google Scholar 

  8. Atwood JL et al (1996) Calixarene chloride channel blockers. US Patent 5:489– 612

    Google Scholar 

  9. Minami K et al (1993) Mechanism of activation of the Ca(2+)-activated K+ channel by cyclic AMP in cultured porcine coronary artery smooth muscle cells. Life Sci 53:1129–1135

    Article  CAS  Google Scholar 

  10. Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955

    Article  CAS  Google Scholar 

  11. Wallace BA (1990) Gramicidin channels and pores. Annu Rev Biophys Chem 19:127–157

    Article  CAS  Google Scholar 

  12. Burkhart BM et al (1998) Heterodimer formation and crystal nucleation of gramicidin. D Biopys J 75:2135–2146 PDBID:1ALZ

    Article  CAS  Google Scholar 

  13. Lomize AL, Orekhov VI, Arsenèv AS (1992) Refinement of the spatial structure of the gramicidin A ion channel. Biol Membr (USSR) 18:182–200 PDBID:1GRM

    CAS  Google Scholar 

  14. Schlesinger PH et al (2002) SCMTR:  a chloride-selective, membrane-anchored peptide channel that exhibits voltage gating. J Am Chem Soc 124:1848–1849

    Article  CAS  Google Scholar 

  15. Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–595

    Article  CAS  Google Scholar 

  16. Stouffer AL et al (2005) Sequence determinants of a transmembrane proton channel: an inverse relationship between stability and function. J Mol Biol 347:169–179

    Article  CAS  Google Scholar 

  17. Yellen G (2002) The voltage-gated potassium channels and their relatives. Nature 419:35–42

    Article  CAS  Google Scholar 

  18. Perozo E et al (2002) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418:942–948

    Article  CAS  Google Scholar 

  19. Nagel G et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Nat Acad Sci USA 100:13940–13945

    Article  CAS  Google Scholar 

  20. Radu I et al (2009) Conformational changes of Channelrhodopsin-2. J Am Chem Soc 131:7313–7319

    Article  CAS  Google Scholar 

  21. Takahashi T et al (1991) Photoisomerization of retinal at 13-ene is important for phototaxis of Chlamydomonas reinhardtii – simultaneous measurements of phototactic and photophobic responses. Biochem Biophys Res Com 178:1273–1279

    Article  CAS  Google Scholar 

  22. Stouffer et al (2008) Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451:596–599 PDBID:3BKD

    Article  CAS  Google Scholar 

  23. Gonen T, Walz T (2006) The structure of aquaporins. Quart Rev Biophys 39:361–396

    Article  CAS  Google Scholar 

  24. Horsefield R et al (2008) High-resolution x-ray structure of human aquaporin 5. Proc Natl Acad Sci USA 105:13327–13332 PDBID:3D9S

    Article  CAS  Google Scholar 

  25. Nilius B, Droogman G (2003) Amazing chloride channels: an overview. Acta Phys Scand 177:119–147

    Article  CAS  Google Scholar 

  26. Dutzler R et al (2002) X-ray structure of a CIC chloride channel at 3.0 angstrom reveals the molecular basis of anion selectivity. Nature 415:287–2940 PDBID:1KPL, 1KPK

    Article  CAS  Google Scholar 

  27. Sato C et al (2001) The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 409:1047–1051

    Article  CAS  Google Scholar 

  28. Jasti J et al (2007) Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449: 316–323

    Article  CAS  Google Scholar 

  29. Hunte C et al (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202

    Article  CAS  Google Scholar 

  30. Legros C, Bougis PE, Martin-Eauclaire MF (1999) Molecular biology of scorpion toxins active on potassium channels. Persp Drug Disc Design 16:1–14

    Article  Google Scholar 

  31. Wulff H et al (2007) Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 14:1437–1457

    Article  CAS  Google Scholar 

  32. Bernèche S, Roux B (2001) Energetics of ion conduction through the K+ channel. Nature 414:73–77

    Article  Google Scholar 

  33. Valiyaveetil FI et al (2004) Glycine as a D-amino acid surrogate in the K+-selectivity filter. Proc Nat Acad Sci USA 101:17045–17049

    Article  CAS  Google Scholar 

  34. Serysheva I et al (2005) Structure of Ca2+ release channel at 14 angstrom resolution. J Mol Biol 345:427–431

    Article  CAS  Google Scholar 

  35. Dudev T, Lim C (2009) Factors governing the Na+ vs K+ selectivity in potassium channels. J Am Chem Soc 131:8092–80101

    Article  CAS  Google Scholar 

  36. Wu G, Wong A (2001) Direct detection of the bound sodium ions in self-assembled 5'-GMP gels: a solid-state Na-23 NMR approach. Chem Commun 2658–2659

    Google Scholar 

  37. Landini D, Montanar F, Pirisi FM (1974) Crown ethers as phase-transfer catalysts in 2-phase reactions. J Chem Soc Chem Commun 879–880

    Google Scholar 

  38. Marinez ER et al (1996) Enterobactin and enantioenterobactin. J Org Chem 61:3548–3550

    Article  CAS  Google Scholar 

  39. Gale PA et al (2005) Co-transport of H+/Cl– by a synthetic prodigiosin mimic. Chem Commun 3773–3775

    Google Scholar 

  40. Seganish JL, Davis JT, Prodigiosin is a chloride carrier that can function as an anion exchanger. Chem Commun 5781–5783

    Google Scholar 

  41. McNally BA et al (2008) Structure-activity relationships in cholapod anion carriers: enhanced transmembrane chloride transport through substituent tuning. Chem Eur J 14:9599–9606

    Article  CAS  Google Scholar 

  42. Lear JD, Masserman ZR, DeGrado WF (1988) Synthetic amphiphilic peptide models for protein ion channels. Science 240:1177–1181

    Article  CAS  Google Scholar 

  43. Voyer N, Potvin L, Rousseau E (1997) Electrical activity of artificial ion channels incorporated into planar lipid bilayers. J Chem Soc Perkin Trans 2:1469–1471

    Google Scholar 

  44. Jullien L, Lehn JM (1988) The chundle approach to molecular channels synthesis of a macrocycle based molecular bundle. Tetrahedron Lett 29:3803–3806

    Article  CAS  Google Scholar 

  45. Fyles TM, James TD, Kaye KC (1993) Activities and modes of action of artificial ion-channel mimics. J Am Chem Soc 115:12315–12321

    Article  CAS  Google Scholar 

  46. Gokel GW (2000) Hydraphiles: design, synthesis and analysis of a family of synthetic, cation-conducting channels. Chem Commun 1–9

    Google Scholar 

  47. Hall CD et al (2003) Cation transport by a redox-active synthetic ion channel. Org Biomol Chem 1:2973–2982

    Article  CAS  Google Scholar 

  48. Tabushi I, Kuroda Y, Yokata K (1982) A,B,D,F-Tetrasubstituted beta-cyclodextrin as artificial channel compound. Tetrahedron Lett 23:4601–4604

    Article  CAS  Google Scholar 

  49. de Mendoza J et al (1998) A synthetic cation-transporting calix[4]arene derivative active in phospholipid bilayers. Angew Chem Int Ed 37:1534–1537

    Article  Google Scholar 

  50. Arduini A et al (1988) Molecular inclusion in functionalized macromolecules 15. para-tert-Butylcalix[4]arene tetra-acetamide – a new strong receptor for alkali cations. J Incl Phenom 6:119–134

    Article  CAS  Google Scholar 

  51. Clark TE et al (2006) Supersized bilayers based on an O-alkyl substituted calix[4]arene. CrystEngComm 8:707–711

    Article  CAS  Google Scholar 

  52. Kobuke Y, Ueda K, Sokabe M (1992) Artificial nonpeptide single ion channels. J Am Chem Soc 114:7618–7622

    Article  CAS  Google Scholar 

  53. Wright AJ et al (2001) Novel resorcin[4]arenes as potassium-selective ion-channel and transporter mimics. Chem Eur J 7:3474–3481

    Article  CAS  Google Scholar 

  54. Matthews SE et al (2002) Calix[4]tubes: A new class of potassium-selective ionophore. J Am Chem Soc 124:1341–1353

    Article  CAS  Google Scholar 

  55. Lawal O et al (2009) An artificial sodium ion channel from calix[4]arene in the 1,3-alternate conformation. Supramol Chem 21:55–60

    Article  CAS  Google Scholar 

  56. Iqbal KSJ et al (2007) Artificial transmembrane ion channels from commercial surfactants. Chem Commun 3951–3953

    Google Scholar 

  57. Menger FM et al (1990) Synthetic flux-promoting compounds – exceeding the ion-transporting ability of gramicidin. J Am Chem Soc 112: 2451–2453

    Article  CAS  Google Scholar 

  58. Nagawa Y, Regen SL (1991) Membrane-disrupting surfactants that are highly selective toward lipid bilayers of varying cholesterol content. J Am Chem Soc 113: 7237–7240

    Article  CAS  Google Scholar 

  59. Kobuke Y, Nagatani T (2001) Transmembrane ion channels constructed of cholic acid derivatives. J Org Chem 66:5094–5101

    Article  CAS  Google Scholar 

  60. Fyles TM, Luong H (2009) Structure-activity relationships in linear oligoester ion-channels. Org Biomol Chem 7:733–738

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Cragg .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cragg, P.J. (2010). Natural and Synthetic Transmembrane Channels. In: Supramolecular Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2582-1_5

Download citation

Publish with us

Policies and ethics