Skip to main content

Can Structures Lead to Better Drugs? Lessons from Ribosome Research

  • Conference paper
From Molecules to Medicines
  • 839 Accesses

Abstract

Ribosome research has undergone astonishing progress in recent years. Crystal structures have shed light on the functional properties of the translation machinery and revealed how the ribosome's striking architecture is ingeniously designed as the framework for its unique capabilities: precise decoding, substrate mediated peptide-bond formation and efficient poly-merase activity. New findings include the two concerted elements of tRNA translocation: sideways shift and a ribosomal-navigated rotatory motion; the dynamics of the nascent chain exit tunnel and the shelter formed by the ribosome-bound trigger-factor, which acts as a chaperone to prevent nascent chain aggregation and misfolding.

These linkage between these findings and crystal structures of ribosomes with over two dozen antibiotics targeting the ribosome, most of which of a high therapeutical relevance, illuminated various modes of binding and action of these antibiotics; deciphered mechanisms leading to resistance; identified the principles allowing for the discrimination between pathogens and eukaryotes despite the high ribosome conservation; enlightened the basis for antibiotics synergism, namely the conversion of two weakly acting compounds to a powerful antibiotic agent; indicated correlations between antibiotics susceptibility and fitness cost and revealed an novel induced-fit mechanism exploiting ribosomal inherent flexibility for reshape the antibiotic binding pocket by remote interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yonath, A. et al. (1980) Crystallization of the large ribosomal subunit from B. stearo-thermophilus. Biochem Int 1, 315–428

    Google Scholar 

  2. Ban, N. et al. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289 (5481), 905–920

    Article  ADS  Google Scholar 

  3. Harms, J. et al. (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107 (5), 679–688

    Article  Google Scholar 

  4. Schluenzen, F. et al. (2000) Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102 (5), 615–623

    Article  Google Scholar 

  5. Wimberly, B.T. et al. (2000) Structure of the 30S ribosomal subunit. Nature 407 (6802), 327–339

    Article  ADS  Google Scholar 

  6. Yusupov, M.M. et al. (2001) Crystal structure of the ribosome at 5.5 A resolution. Science 292 (5518), 883–896

    Article  ADS  Google Scholar 

  7. Yonath, A. (2005) Ribosomal crystallography: peptide bond formation, chaperone assistance and antibiotics activity. Mol Cells 20, 1–16

    Article  Google Scholar 

  8. Ogle, J.M. and Ramakrishnan, V. (2005) Structural insights into translational fidelity. Annu Rev Biochem 74, 129–177

    Article  Google Scholar 

  9. Moore, P.B. and Steitz, T.A. (2005) The ribosome revealed. Trends Biochem Sci 30 (6), 281–283

    Article  Google Scholar 

  10. Schuwirth, B.S. et al. (2005) Structures of the Bacterial Ribosome at 3.5 A Resolution. Science 310 (5749), 827–834

    Article  ADS  Google Scholar 

  11. Selmer, M. et al. (2006) Structure of the 70S Ribosome Complexed with mRNA and tRNA. Science 313 (5795), 1935–1942

    Article  ADS  Google Scholar 

  12. Korostelev, A. et al. (2006) Crystal Structure of a 70S Ribosome-tRNA Complex Reveals Functional Interactions and Rearrangements. Cell 126, 1065–1077

    Article  Google Scholar 

  13. Yusupova, G. et al. (2006) Structural basis for messenger RNA movement on the ribo-some. Nature 444 (7117), 391–394

    Article  ADS  Google Scholar 

  14. Jenner, L. et al. (2007) Messenger RNA conformations in the ribosomal E site revealed by X-ray crystallography. EMBO Rep 8 (9), 846–850

    Article  Google Scholar 

  15. Jenner, L. et al. (2005) Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome binding. Science 1308 (5718), 120–123

    Article  ADS  Google Scholar 

  16. Weixlbaumer, A. et al. (2007) Crystal structure of the ribosome recycling factor bound to the ribosome. Nat Struct Mol Biol 14 (8), 733–737

    Article  Google Scholar 

  17. Pai, R.D. et al. (2008) Structural insights into ribosome recycling factor interactions with the 70S ribosome. J Mol Biol 376 (5), 1334–1347

    Article  MathSciNet  Google Scholar 

  18. Petry, S. et al. (2005) Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123 (7), 1255–1266

    Article  Google Scholar 

  19. Kaminishi, T. et al. (2007) A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction. Structure 15 (3), 289–297

    Article  Google Scholar 

  20. Dunham, C.M. et al. (2007) Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit. RNA 13 (6), 817–823

    Article  Google Scholar 

  21. Weixlbaumer, A. et al. (2007) Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nat Struct Mol Biol 14 (6), 498–502

    Article  Google Scholar 

  22. Nissen, P. et al. (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289 (5481), 920–930

    Article  ADS  Google Scholar 

  23. Bashan, A. et al. (2003) Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol Cell 11, 91–102

    Article  Google Scholar 

  24. Schmeing, T.M. et al. (2005) An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438 (7067), 520–524

    Article  ADS  Google Scholar 

  25. Schmeing, T.M. et al. (2005) Structural insights into the roles of water and the 2' hydroxyl of the P Site tRNA in the peptidyl transferase reaction. Mol Cell 20 (3), 437–448

    Article  Google Scholar 

  26. Baram, D. et al. (2005) Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. Proc Natl Acad Sci USA 102, 12017–12022

    Article  ADS  Google Scholar 

  27. Schluenzen, F. et al. (2005) The binding mode of the trigger factor on the ribosome: Implications for protein folding and SRP interaction. Structure (Camb) 13 (11), 1685– 1694

    Article  Google Scholar 

  28. Ferbitz, L. et al. (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431 (7008), 590–596

    Article  ADS  Google Scholar 

  29. Wilson, D.N. et al. (2005) X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. Embo J 24 (2), 251–260

    Article  Google Scholar 

  30. Gregory, S.T. et al. (2005) Mutational Analysis of 16S and 23S rRNA genes of Thermus thermophilus. J Bacteriol 187 (14), 4804–4812

    Article  Google Scholar 

  31. Bayfield, M.A. et al. (2001) A conformational change in the ribosomal peptidyl transferase center upon active/inactive transition. Proc Natl Acad Sci USA 98 (18), 10096–10101

    Article  ADS  Google Scholar 

  32. Xiong, L. et al. (2001) pKa of adenine 2451 in the ribosomal peptidyl transferase center remains elusive. RNA 7 (10), 1365–1369

    Google Scholar 

  33. Weinger, J.S. et al. (2004) Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat Struct Mol Biol 11 (11), 1101–1106

    Article  Google Scholar 

  34. Youngman, E.M. et al. (2004) The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117 (5), 589–599

    Article  Google Scholar 

  35. Diaconu, M. et al. (2005) Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121 (7), 991–1004

    Article  Google Scholar 

  36. Maguire, B.A. et al. (2005) A protein component at the heart of an RNA machine: the importance of protein l27 for the function of the bacterial ribosome. Mol Cell 20 (3), 427–435

    Article  Google Scholar 

  37. Beringer, M. et al. (2005) Essential mechanisms in the catalysis of peptide bond formation on the ribosome. J Biol Chem 280 (43), 36065–36072

    Article  Google Scholar 

  38. Sharma, P.K. et al. (2005) What are the roles of substrate-assisted catalysis and proximity effects in peptide bond formation by the ribosome? Biochemistry 44 (30), 11307–11314

    Article  Google Scholar 

  39. Ziv, G. et al. (2005) Ribosome exit tunnel can entropically stabilize {alpha}-helices. Proc Natl Acad Sci USA 102: (52), 18956–18961

    Article  ADS  Google Scholar 

  40. Agmon, I. et al. (2005) Symmetry at the active site of the ribosome: Structural and functional implications. Biol Chem 386 (9), 833–844

    Article  Google Scholar 

  41. Agmon, I. et al. (2006) On Ribosome Conservation and Evolution. Isr J Ecol Evol 52, 359–379

    Article  Google Scholar 

  42. Kaiser, C.M. et al. (2006) Real-time observation of trigger factor function on translating ribosomes. Nature 444 (7118), 455–460

    Article  ADS  Google Scholar 

  43. Trobro, S. and Aqvist, J. (2006) Analysis of predictions for the catalytic mechanism of ribosomal peptidyl transfer. Biochemistry 45 (23), 7049–7056

    Article  Google Scholar 

  44. Bieling, P. et al. (2006) Peptide bond formation does not involve acid-base catalysis by ribosomal residues. Nat Struct Mol Biol 13 (5), 424–428

    Article  Google Scholar 

  45. Brunelle, J.L. et al. (2006) The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA 12 (1), 33–39

    Article  Google Scholar 

  46. Sato, N.S. et al. (2006) Comprehensive genetic selection revealed essential bases in the peptidyl-transferase center. Proc Natl Acad Sci USA 103 (42), 15386–15391

    Article  ADS  Google Scholar 

  47. Gindulyte, A. et al. (2006) The transition state for formation of the peptide bond in the ribosome. Proc Natl Acad Sci USA 103 (36), 13327–13332

    Article  ADS  Google Scholar 

  48. Woolhead, C.A. et al. (2006) Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Mol Cell 22 (5), 587–598

    Article  Google Scholar 

  49. Uemura, S. et al. (2007) Peptide bond formation destabilizes Shine-Dalgarno interaction on the ribosome. Nature 446 (7134), 454–457

    Article  ADS  Google Scholar 

  50. Helgstrand, M. et al. (2007) The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain. J Mol Biol 365 (2), 468–479

    Article  Google Scholar 

  51. Rodnina, M.V. et al. (2007) How ribosomes make peptide bonds. Trends Biochem Sci 32 (1), 20–26

    Article  Google Scholar 

  52. Weinger, J.S. and Strobel, S.A. (2007) Exploring the mechanism of protein synthesis with modified substrates and novel intermediate mimics. Blood Cells Mol Dis 38 (2), 110–116

    Article  Google Scholar 

  53. Hobbie, S.N. et al. (2007) Engineering the rRNA decoding site of eukaryotic cytosolic ribosomes in bacteria. Nucleic Acids Res 35 (18), 6086–6093

    Article  Google Scholar 

  54. Youngman, E.M. et al. (2007) Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release. Mol Cell 28 (4), 533–543

    Article  Google Scholar 

  55. Cho, P.F. et al. (2005) A new paradigm for translational control: inhibition via 5'−3' mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell 121 (3), 411–423

    Article  Google Scholar 

  56. Andersen, C.B. et al. (2006) Structure of eEF3 and the mechanism of transfer RNA release from the E-site. Nature 443 (7112), 663–668

    Article  ADS  Google Scholar 

  57. Yonath, A. and Bashan, A. (2004) Ribosomal crystallography: Initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. Annu Rev Micro-biol 58, 233–251

    Article  Google Scholar 

  58. Polacek, N. and Mankin, A.S. (2005) The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Crit Rev Biochem Mol Biol 40 (5), 285–311

    Article  Google Scholar 

  59. Yonath, A. (2005) Antibiotics targeting ribosomes: resistance, selectivity, synergism, and cellular regulation. Annu Rev Biochem 74, 649–679

    Article  Google Scholar 

  60. Tenson, T. and Mankin, A. (2006) Antibiotics and the ribosome. Mol Microbiol 59 (6), 1664–1677

    Article  Google Scholar 

  61. Bottger, E.C. (2007) Antimicrobial agents targeting the ribosome: the issue of selectivity and toxicity — lessons to be learned. Cell Mol Life Sci 64 (7–8), 791–795

    Article  Google Scholar 

  62. Schluenzen, F. et al. (2006) The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat Struct Mol Biol 13 (10), 871–878

    Article  Google Scholar 

  63. Schuwirth, B.S. et al. (2006) Structural analysis of kasugamycin inhibition of translation. Nat Struct Mol Biol 13 (10), 879–886

    Article  Google Scholar 

  64. Davidovich, C. et al. (2007) Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity. Proc Natl Acad Sci USA 104 (11), 4291– 4296

    Article  ADS  Google Scholar 

  65. Pyetan, E. et al. (2007) Chemical parameters influencing fine-tuning in the binding of macrolide antibiotics to the ribosomal tunnel. Pure Appl Chem 79 (6), 955–968

    Article  Google Scholar 

  66. Borovinskaya, M.A. et al. (2007) Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat Struct Mol Biol 14 (8), 727–732

    Article  Google Scholar 

  67. Schroeder, S.J. et al. (2007) The structures of antibiotics bound to the E Site region of the 50 S ribosomal subunit of Haloarcula marismortui: 13-Deoxytedanolide and Girodazole. J Mol Biol 367 (5), 1471–1479

    Article  Google Scholar 

  68. Hobbie, S.N. et al. (2008) Mitochondrial deafness alleles confer misreading of the genetic code. Proc Natl Acad Sci USA 105 (9), 3244–3249

    Article  ADS  Google Scholar 

  69. Berisio, R. et al. (2003) Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat Struct Biol 10 (5), 366–370

    Article  Google Scholar 

  70. Pfister, P. et al. (2005) 23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A–>G. Proc Natl Acad Sci USA 102 (14), 5180–5185

    Article  ADS  Google Scholar 

  71. Tu, D. et al. (2005) Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121, 257–270

    Article  Google Scholar 

  72. Bommakanti, A.S. et al. (2008) Mutation from guanine to adenine in 25S rRNA at the position equivalent to E. coli A2058 does not confer erythromycin sensitivity in Sacchro-myces cerevisae. RNA 14 (3), 460–464

    Article  Google Scholar 

  73. Frank, J. et al. (2005) The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer. FEBS Lett 579 (4), 959–962

    Article  Google Scholar 

  74. Konevega, A.L. et al. (2007) Spontaneous reverse movement of mRNA-bound tRNA through the ribosome. Nat Struct Mol Biol 14 (4), 318–324

    Article  Google Scholar 

  75. Frank, J. and Agrawal, R.K. (2000) A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406 (6793), 318–322

    Article  ADS  Google Scholar 

  76. Wittmann, H.G. (1982) Structure and evolution of ribosomes. Proc R Soc Lond B Biol Si, 216, 117–135

    Article  ADS  Google Scholar 

  77. Diedrich, G. et al. (2000) Ribosomal protein L2 is involved in the association of the ribosomal subunits, tRNA binding to A and P sites and peptidyl transfer. Embo J 19 (19), 5241–5250

    Article  Google Scholar 

  78. Sobolevsky, Y. and Trifonov, E.N. (2005) Conserved sequences of prokaryotic proteomes and their compositional age. J Mol Evol 61 (5), 591–596

    Article  Google Scholar 

  79. Schaffitzel, C. et al. (2006) Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 444 (7118), 503–506

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Yonath, A. (2009). Can Structures Lead to Better Drugs? Lessons from Ribosome Research. In: Sussman, J.L., Spadon, P. (eds) From Molecules to Medicines. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2339-1_15

Download citation

Publish with us

Policies and ethics