Skip to main content

Surface Proteins of Gram-Positive Pathogens: Using Crystallography to Uncover Novel Features in Drug and Vaccine Candidates

  • Conference paper
From Molecules to Medicines

Abstract

Proteins displayed on the cell surfaces of pathogenic organisms are the front-line troops of bacterial attack, playing critical roles in colonization, infection and virulence. Although such proteins can often be recognized from genome sequence data, through characteristic sequence motifs, their functions are often unknown. One such group of surface proteins is attached to the cell surface of Gram-positive pathogens through the action of sortase enzymes. Some of these proteins are now known to form pili: long filamentous structures that mediate attachment to human cells. Crystallographic analyses of these and other cell surface proteins have uncovered novel features in their structure, assembly and stability, including the presence of inter- and intramolecular isopeptide crosslinks. This improved understanding of structures on the bacterial cell surface offers opportunities for the development of some new drug targets and for novel approaches to vaccine design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eisenhaber, F., Eisenhaber, B., Kubina, W., Maurer-Stroh, S., Neuberger, G., Schneider, G. & Wildpaner, M. (2003). Nucl. Acids Res. 31, 3631–3634.

    Article  Google Scholar 

  2. Mazmanian, S.K., Liu, G., Ton-That, H. & Schneewind, O. (1999). Science 285, 760–763.

    Article  Google Scholar 

  3. Cunningham, M.W. (2000). Clin. Microbiol. Rev. 13, 470–511.

    Article  Google Scholar 

  4. Rodriguez-Ortega, M.J., Norais, N., Bensi, G., Liberatori, S., Capo, S., Mora, M. et al. (2006). Nature Biotechnol. 2, 191–197.

    Article  Google Scholar 

  5. Kreikemeyer, B., Klenk, M. & Podbielski, A. (2004). Int. J. Med. Microbiol. 294, 177–188.

    Article  Google Scholar 

  6. Mora, M., Bensi, G., Capo, S., Falugi, F., Zingaretti, C., Manetti, A.G.O. et al. (2005). Proc. Natl. Acad. Sci. USA 102, 15641–15646.

    Article  ADS  Google Scholar 

  7. Craig, L., Pique, M.E. & Tainer, J.A. (2004). Nature Rev. Microbiol. 2, 363–378.

    Article  Google Scholar 

  8. Sauer, F.G., Futterer, K., Pinkner, J.S., Dodson, K.W., Hultgren, S.J. & Waksman, G. (1999). Science 285, 1058–1061.

    Article  Google Scholar 

  9. Vetsch, M., Puorger, C., Spirig, T., Grauschopf, U., Weber-Ban, E.U. & Glockshuber, R. (2004). Nature 431, 329–332.

    Article  ADS  Google Scholar 

  10. Ton-That, H. & Schneewind, O. (2003). Mol. Microbiol. 50, 1429–1438.

    Article  Google Scholar 

  11. Barocchi, M.A., Ries, J., Zogaj, X., Hemsley, C., Albiger, B., Kanth, A. et al. (2006). Proc. Natl. Acad. Sci. USA 103, 2857–2862.

    Article  ADS  Google Scholar 

  12. Lauer, P., Rinaudo, C.D., Soriani, M., Margarit, I., Maione, D., Rosini, R. et al. (2005). Science 309, 105.

    Article  ADS  Google Scholar 

  13. Rosini, R., Rinaudo, C.D., Soriani, M., Lauer, P., Mora, M., Maione, D. et al. (2006). Mol. Microbiol. 61, 126–141.

    Article  Google Scholar 

  14. Telford, J.L., Barocchi, M.A., Margarit, I., Rappuoli, R. & Grandi, G. (2006). Nature Rev. Microbiol. 4, 509–519.

    Article  Google Scholar 

  15. Scott, J.R. & Zahner, D. (2006). Mol. Microbiol. 62, 320–330.

    Article  Google Scholar 

  16. Swaminathan, A., Mandlik, A., Swierczinski, A., Gaspar, A., Das, A. & Ton-That, H. (2007). Mol. Microbiol. 66, 961–974.

    Article  Google Scholar 

  17. Budzik, J.M., Marraffini, L.A. & Schneewind, O. (2007). Mol. Microbiol. 66, 495–510.

    Article  Google Scholar 

  18. Pickart, C.M. (2001). Annu. Rev. Biochem. 70, 503–533.

    Article  Google Scholar 

  19. Greenberg, C.S., Birckbichler, P.J. & Rice, R.H. (1991). FASEB J. 5, 3071–3077.

    Google Scholar 

  20. Zimmerman, S.B. & Trach, S.O. (1991). J. Mol. Biol. 222, 599–620.

    Article  Google Scholar 

  21. Hodgkin, D.C. (1965). Les Prix Nobel, 157–178.

    Google Scholar 

  22. Ito, N., Phillips, S.E.V., Stevens, C., Ogel, Z.B., McPherson, M.J., Keen, J.N. et al. (1991). Nature 350, 87–90.

    Article  ADS  Google Scholar 

  23. Zhang, R., Wu, R., Joachimiak, G., Mazmanian, S.K., Missiakis, D.M., Gornicki, P. et al. (2004). Structure 12, 1147–1156.

    Article  Google Scholar 

  24. Kang, H.J., Coulibaly, F., Clow, F., Proft, T. & Baker, E.N. (2007). Science 318, 1625–1628.

    Article  ADS  Google Scholar 

  25. Deivanayagam, C.C.S., Rich, R.L., Carson, M., Owens, R.T., Danthuluri, S., Bice, T. et al. (2000). Structure 8, 67–78.

    Article  Google Scholar 

  26. Wikoff, W.R., Liljas, L., Duda, R.L., Tsuruta, H., Hendrix, R.W. & Johnson, J.E. (2000). Science 289, 2129–2133.

    Article  ADS  Google Scholar 

  27. Krishnan, V., Gaspar, A.H., Ye, N., Mandlik, A., Ton-That, H. & Narayana, S.V.L. (2007). Structure 15, 893–903.

    Article  Google Scholar 

  28. Budzik, J.M., Marraffini, L.A., Souda, P., Whitelegge, J.P., Faull, K.F. & Schneewind, O. (2008). Proc. Natl. Acad. Sci. USA 105, 10215–10220.

    Article  ADS  Google Scholar 

  29. Hilleringmann, M., Giusti, F., Baudner, B.C., Masignani, V., Covacci, A., Rappuoli, R. et al. (2008). PLOS Pathogens 4, 1–11.

    Article  Google Scholar 

  30. Yeates, T.O. & Clubb, R.T. (2007). Science 318, 1558–1559.

    Article  Google Scholar 

  31. Abbot, E.L., Smith, W.D., Siou, G.P.S., Chiriboga, C., Smith, R.J., Wilson, J.A. et al. (2007). Cell. Microbiol. 9, 1822–1833.

    Article  Google Scholar 

  32. Pinkner, J.S., Remaut, H., Buelens, F., Miller, E., Aberg, V., Pemberton, N. et al. (2006). Proc. Natl. Acad. Sci. USA 103, 17897–17902.

    Article  ADS  Google Scholar 

  33. Buccato, S., Maione, D., Rinaudo, C.D., Volpini, G., Taddei, A.R., Rosini, R. et al. (2006). J. Infect. Dis. 194, 331–340.

    Article  Google Scholar 

  34. Alteri, C.J., Xicohtencatl-Cortes, J., Hess, S., Caballero-Olin, G., Giron, J.A. & Friedman, R.L. (2007). Proc. Natl. Acad. Sci. USA 104, 5145–5150.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Baker, E.N., Proft, T., Kang, H. (2009). Surface Proteins of Gram-Positive Pathogens: Using Crystallography to Uncover Novel Features in Drug and Vaccine Candidates. In: Sussman, J.L., Spadon, P. (eds) From Molecules to Medicines. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2339-1_1

Download citation

Publish with us

Policies and ethics