Skip to main content

Grape Berry Mineral Composition in Relation to Vine Water Status & Leaf Area/Fruit Ratio

  • Chapter
Grapevine Molecular Physiology & Biotechnology

The use of irrigation in Viticulture is considered as a standard practice, and it is performed mainly during drought periods as an effective means for regulating water availability to grapevines. Grape development and ripening have been extensively studied, both in terms on the factors involved in fruit growth and the evolution of primary and secondary metabolites (Ribéreau-Gayon 1975, Possner and Kliewer 1985, Coombe 1987, Iland and Coombe 1988, Gutiérrez-Granda and Morrison 1992, Ollat et al. 2002). The influence of water supply on plant development and physiology has been widely described in the literature (Smart et al. 1974, Hardie and Considine 1976, Becker and Zimmermann 1984, Van Zyl 1984, Matthews et al. 1987, McCarthy 1997, Ojeda et al. 2001, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashley DA, Goodson RD (1972) Effect of time and plant K status on 14C-labelled photosynthate movement in cotton. Crop Sci 12:686-690

    Article  CAS  Google Scholar 

  • Becker N, Zimmermann H (1984) The effect of different amounts of water on grapevines in containers, on shoot maturation, berry development and wine quality. Bull O.I.V. 57:584-596

    Google Scholar 

  • Boselli M, Volpe B, Divaio C (1995) Effect of seed number per berry on mineral composition of grapevine (Vitis vinifera L) berries. J Hort Sci 70: 509-515

    Google Scholar 

  • Brownell PF, Crossland CJ (1972) The requirement of sodium as a micronutrient by species having the C4 decarboxylic acid photosynthetic pathway. Plant Physiol 49: 794-797

    Article  PubMed  CAS  Google Scholar 

  • Brownell PF, Crossland CJ (1974) Growth responses to sodium by Bryophyllum tubiflorum under conditions inducing crassulacean acid metabolism. Plant Physiol 54: 416-417

    Article  PubMed  CAS  Google Scholar 

  • Burström HG (1968) Calcium and plant growth. Biol Rev 43:287-316

    Article  Google Scholar 

  • Cabanne C, Donèche B (2001) Changes in polygalacturonase activity and calcium content during ripening of grape berries. Am J Enol Vitic 52: 331-335

    CAS  Google Scholar 

  • Cabanne C, Donèche B (2003) Calcium accumulation and redistribution during the development of the grape berry. Vitis 42:19-21

    CAS  Google Scholar 

  • Carbonneau A (1998) Irrigation, vignoble et produits de la vigne. In: Tiercelin JR (ed) Traité d’Irrigation. Lavoisier Tec & Doc. Chapitre IV: Aspects Qualitatifs, Paris

    Google Scholar 

  • Chardonnet C, Donèche B (1995) Relation between calcium content and resistance to enzymatic digestion of the skin during grape ripening. Vitis 34: 5-98

    Google Scholar 

  • Cheeseman JM, Hanson JB (1979) Energy-linked potassium influx as related to cell potential in corn roots. Plant Physiol 64:842-845

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31: 239-298

    Article  CAS  Google Scholar 

  • Conradie WJ (1981) Seasonal uptake of nutrients by Chenin blanc in sand culture. II. Phosphorus, potassium, calcium and magnesium. S Afr J Enol Vitic 2: 7-13

    CAS  Google Scholar 

  • Considine JA, Know RB (1979) Development and histochemistry of the cells, cell-walls and cuticule of the dermal system of the fruit of the grape berry Vitis vinifera L. Protoplasma 99: 347-365

    Article  Google Scholar 

  • Coombe BG (1987) Distribution of solutes within the developing grape berry in relation to its morphology. Am J Enol Vitic 38: 120-7

    CAS  Google Scholar 

  • Coombe BG (1992) Research on the development and ripening of the grape berry. Am J Enol Vitic 43: 101-110

    Google Scholar 

  • Coombe BG (1995) Grapevine growth stages. The modified E-L system. Aust J Grape Wine Res 1: 100-110

    Google Scholar 

  • Cram WJ (1974) The regulation of concentration and hydrostatic pressure in cells in relation to growth. In: Bieleski RL, Ferguson AR, Cresswell MM (ed) Mechanisms of Regulation of Plant Growth. Wellington: R Soc NZ

    Google Scholar 

  • Cram WJ (1976) Negative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrient supply. Encyclopedia of Plant Physiology, 2A: 284-316. Berlin-Heidelberg-New York: Springer

    Google Scholar 

  • Creasy GL, Price F, Lombard PB (1993) Evidence for xylem discontinuity in Pinot Noir and Merlot: Dye uptake and mineral composition during berry ripening. Am J Enol Vitic 44: 187-192

    CAS  Google Scholar 

  • Deloire A, Vaudour E, Carey V, Bonnardot V, Van Leeuwen C (2005) Grapevine responses to terroir: a global approach. J Int Sci Vigne Vin 39:149–162

    Google Scholar 

  • Donèche B, Chardonnet C (1992) Evolution and localization or the main cations during grape berry development. Vitis 31: 175-181

    Google Scholar 

  • Dundon CG, Smart RE (1984) Effects of water relations on the potassium status of Shiraz vines. Am J Enol Vitic 35: 40-45

    Google Scholar 

  • Düring H, Lang A, Oggionni F (1987) Patterns of water flow in Riesling berries in relation to developmental changes in their xylem morphology. Vitis 26:123-131

    Google Scholar 

  • El Hinnaway E (1974) Chelating compounds as cell wall-loosening agents in cell suspension cultures of Melilotus alba Desr. Z Pflanzenphysiol 71:207-219

    Google Scholar 

  • Esteban A, Villanueva J, Lissarrague JR (1999) Effect of irrigation on changes in berry composition of Tempranillo during ripening. sugar, organic acids and mineral elements. Am J Enol Vitic 50:418-434

    Google Scholar 

  • Evans HJ, Sorger GJ (1966) Role of mineral elements with emphasis on the univalent cations. Annu Rev Plant Physiol 17: 47-76

    Article  CAS  Google Scholar 

  • Famiani, F., Walker, R.P., Técsi, L., Chen, Z.H., Proietti, P., and R.C. Leegood (2000) An immuno-histochemical study of the compartmentation of metabolism during the development of grape (Vitis vinifera L.) berries. J Exp Bot 51:675–683.

    Article  PubMed  CAS  Google Scholar 

  • Findlay N, Oliver KJ, Nii N, Coombe BG (1987) Solute accumulation by grape pericarp cells. IV. Perfusion of pericarp apoplast via the pedicel and evidence for xylem malfunction in ripening berries. J Exp Bot 38:668-679

    Article  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89-121

    Article  CAS  Google Scholar 

  • Ginzburg BZ (1961) Evidence for a protein gel structure crosslinked by metal cations in the intercellular cement of plant tissue. J Exp Bot 12:85-107

    Article  CAS  Google Scholar 

  • Greenspan MD, Shackel KA, Matthews MA (1994) Developmental changes in the diurnal water budget of the grape berry exposed to water deficits. Plant Cell Environ 17:811-820

    Article  Google Scholar 

  • Greenspan MD, Schultz HR, Matthews MA (1996) Field evaluation of water transport in grape berries during water deficits. Plant Physiol 97:55-62

    Article  CAS  Google Scholar 

  • Gutiérrez-Granda MJ, Morrison JC (1992) Solute distribution and malic enzyme activity in developing grape berries. Am J. Enol Vitic 43:323-328

    Google Scholar 

  • Hale CR, Weaver RJ (1962) The effect of developmental stage on direction of translocation of photosynthate in Vitis vinifera. Hilgardia 33:89-131

    Google Scholar 

  • Hale CR (1977) Relation between potassium and the malate and tartrate contents of grape berries. Vitis 16:9-19

    CAS  Google Scholar 

  • Hanger BC (1979) Movement of calcium in plants. Comm Soil Sci Plant Anal 10:171-193

    Article  CAS  Google Scholar 

  • Hardie WJ, Considine JA (1976) Response of grapes to water-deficit stress in particular stages of development. Am J Enol Vitic 27:55-61

    Google Scholar 

  • Harris JM, Kriedemann PE, Possingham JV (1968) Anatomical aspects of grape berry development. Vitis 7:106-109

    Google Scholar 

  • Hartt CE (1970) Effect of potassium deficiency upon translocation of 14C in detached blades of sugarcane. Plant Physiol 45:183-187

    Article  PubMed  CAS  Google Scholar 

  • Hellebust JA (1976) Osmoregulation. Annu Rev Plant Physiol 27:485-505

    Article  CAS  Google Scholar 

  • Higinbotham N (1973) Electropotentials of plant cells. Annu Rev Plant Physiol 24: 25-46

    Article  CAS  Google Scholar 

  • Hodges TK (1973) Ion absorption by plant roots. Adv Agron 25:163-207

    Article  CAS  Google Scholar 

  • Hrazdina G, Parsons GF, Mattick LR (1984) Physiological and biochemical events during development and ripening of grape berries. Am J Enol Vitic 35:220-227

    CAS  Google Scholar 

  • Iland PG, Coombe BG (1988) Malate, tartrate, potassium and sodium in flesh and skin of Shiraz grapes during ripening: Concentration and compartmentation. Am J Enol Vitic 39: 71-76

    CAS  Google Scholar 

  • Jennings DH (1976) The effect of sodium chloride on higher plants. Biol Rev 51:454-486

    Article  Google Scholar 

  • Jeschke WD (1973) K+-stimulated Na+efflux and selective transport in barley roots. In: Anderson WP(ed) Ion Transport in Plants. Academic Press, New York

    Google Scholar 

  • Kaps ML, Cahoon GA (1992) Growth and fruiting of container-grown Seyval blanc grapevines modified by changes in crop level, leaf number and position, and light exposure. Am J Enol Vitic 43:191-199

    Google Scholar 

  • Klein I, Strime M, Fanberstein L, Mani Y (2000) Irrigation and fertirrigation effects on phosphorus and potassium nutrition of wine grape. Vitis 39:55-62

    Google Scholar 

  • Lang A (1983) Turgor-related translocation. Plant Cell Environ 6:683-689

    Google Scholar 

  • Lang A, Thorpe MR (1989) Xylem, phloem and transpiration flows in a grape: Application of a technique for measuring the volume of attached fruits to high resolution using Archimedes’ Principle. J Exp Bot 40:1069-1078

    Article  Google Scholar 

  • Lin W, Hanson JB (1976) Cell potentials, cell resistance, and proton fluxes in corn root tissue. Plant Physiol 58:276-282

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher Plants. Academic Press, London

    Google Scholar 

  • Matthews MA, Anderson MM, Schultz HT (1987) Phenologic and growth responses to early and late season water deficits in Cabernet Franc. Vitis 26:147-160

    Google Scholar 

  • McCarthy MG (1997) The effect of transient water deficit on berry development of cv Shiraz (Vitis vinifera L.) Aust J Grape Wine Res 3:102-108

    Google Scholar 

  • Mengel K, Viro M (1974) The effect of potassium supply on the transport of photosynthates to the fruits of tomatoes (Lycopersicon esculentum). Physiol Plant 30: 295-300

    Article  CAS  Google Scholar 

  • Mengel K (1976) Potassium in plant physiology and yield formation. Bull Indian Soc Soil Sci 10:241-258

    CAS  Google Scholar 

  • Mengel K, Kirkby EA (1978) Principles of Plant Nutrition. Int Potash Inst, Bern.

    Google Scholar 

  • Morris LR, Sims CA, Cawton DL (1983) Effects of excessive potassium levels on pH, acidity and colour of fresh and stored grape juice. Am J Enol Vitic 34: 35-39

    CAS  Google Scholar 

  • Mpelasoka BS, Schachtman DP, Treeby MT, Thomas MR (2003) A review of potassium nutrition in grapevines. Aust J Grape Wine Res 9: 154-168

    Article  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1996) Biology of the Grapevine. Cambridge University Press, Cambridge

    Google Scholar 

  • Nicholas DJD (1961) Minor mineral nutrients. Annu Rev Plant Physiol 12: 63-90

    Article  CAS  Google Scholar 

  • Nii N, Coombe BG (1983) Structure and development of the berry and pedicel of the grape Vitis vinifera L. Acta Hortic 139:129-140

    Google Scholar 

  • Odet J, Dumoulin J (1993) A complex physiological disorder. Glassiness of melon. Info-CTIFL 89: 31-34

    Google Scholar 

  • Ollat N, Gaudillere JP (1996) Investigation of assimilate import mechanisms in berries of Vitis vinifera var. Cabernet Sauvignon. Acta Hortic 427:141-149

    Google Scholar 

  • Ollat N, Diakou-Verdin P, Carde J-P, Barrieu F, Gaudillère JP, Moing A (2002) Grape berry development: a review. J Int Sci Vigne Vin 36:109-131

    CAS  Google Scholar 

  • Ojeda H, Deloire A, Carbonneau A (2001) Influence of water deficits on grape berry growth. Vitis 40:141-145

    Google Scholar 

  • Ojeda H, Andary C, Kraeva E, Carbonneau A, Deloire A (2002) Influence of pre- and postvéraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera L., cv Shiraz. Am J Enol Vitic 53: 261-267

    CAS  Google Scholar 

  • Poni S, Lakso AN, Tgurner JR, Melious RE (1994) Interactions of crop level and last season water stress on growth and physiology of field-grown Concord grapevines. Am J Enol Vitic 45:252-258

    Google Scholar 

  • Poole RJ (1978) Energy coupling for membrane transport. Annu Rev Plant Physiol 29: 437-460

    Article  CAS  Google Scholar 

  • Poovaiah BW, Leopold AC (1973) Inhibition of abscission by calcium. Plant Physiol 51:848-851

    Article  PubMed  CAS  Google Scholar 

  • Poovaiah BW, Leopold AC (1976) Effects of inorganic salts on tissue permeability. Plant Physiol 58:182-185

    Article  PubMed  CAS  Google Scholar 

  • Possner DRE, Kliewer WM (1985) The localization of acids, sugars, potassium and calcium in developing grape berries. Vitis 24:229-240

    CAS  Google Scholar 

  • Rains DW (1972) Salt transport by plants in relation to salinity. Annu Rev Plant Physiol 23:367-388

    Article  CAS  Google Scholar 

  • Raschke K (1977) The stomatal turgor mechanism and its responses to CO2 and abscissic acid: observations and a hypothesis. In: Marrè E, Ciferri O (eds) Regulation of Cell Membrane Activities in Plants. Amsterdam: Elsevier-North Holland

    Google Scholar 

  • Ratner A, Jacoby B (1976) Effect of K+, its counter anion, and pH on sodium efflux of barley root tips. J Exp Bot 27:843-852

    Article  CAS  Google Scholar 

  • Ribéreau-Gayon J, Peynaud E, Ribéreau-Gayon P, Sudraud P (1975) Study of grape ripening. In: Science and Techniques of Wine. Vol. 2. Dunod Edt. Paris, France

    Google Scholar 

  • Rogiers SY, Keller M, Holzapfel BP, Virgona JM (2000) Accumulation of potassium and calcium by ripening berries on field vines of Vitis vinifera (L) cv. Shiraz. Aust J Grape Wine Res 6:240-243

    Article  CAS  Google Scholar 

  • Rogiers SY, Smith, JS, White R, Keller M, Holzapfel BP, Virgona JM (2001) Vascular function in berries of Vitis vinifera (L) cv Shiraz. Aust J Grape Wine Res 7: 47–51.

    Article  Google Scholar 

  • Rogiers SY, Greer DH, Hatfield JM (2006a) Solute transport into Shiraz berries during development and late-ripening shrinkage. Am J Enol Vitic 57:73-80

    Google Scholar 

  • Rogiers SY, Greer DH, Hatfield JM, Orchard BA, Keller M (2006b) Mineral sinks within ripening grape berries (Vitis vinifera L.). Vitis 45:115-123

    Google Scholar 

  • Satter RL, Geballe GT, Applewhite PB, Galston AW (1974) Potassium flux and leaf movement in Samanea saman. J Gen Physiol 64:413-430

    Article  PubMed  CAS  Google Scholar 

  • Saure MC (2005) Calcium translocation to fleshy fruit: Its mechanism and endogenous control. Sci Hortic 105: 65-89

    Article  CAS  Google Scholar 

  • Schrempf M, Satter RL, Galston AW (1976) Potassium-linked chloride fluxes during rhythmic leaf movement of Albizzia julibrissin. Plant Physiol 58:190-192

    Article  PubMed  CAS  Google Scholar 

  • Schaller K, Löhnertz O, Chikkasubbanna V (1992) Uptake of potassium by the grape berries of different cultivars during growth and development. Vitic Enol Sci 47:36-39

    CAS  Google Scholar 

  • Scholander PF, Hammel HT, Brandstreet ET, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339-346

    Article  PubMed  CAS  Google Scholar 

  • Seguin G (1975) Alimentation en eau de la vigne et composition chimique des moûts dans les grands crûs du Médoc. Phénomènes de régulation. Conn Vigne Vin 9:23–34

    Google Scholar 

  • Shear CB (1975) Calcium related disorders of fruits and vegetables. HortScience 10:361-365

    CAS  Google Scholar 

  • Shomer-Ilan A, Waisel Y (1973) The effect of sodium chloride on the balance between C3 and C4 carbon fixation pathways. Physiol Plant 29:190-193

    Article  CAS  Google Scholar 

  • Simon EW (1978) The symptoms of calcium deficiency in plants. New Phytol 80:1-15

    Article  CAS  Google Scholar 

  • Smart RE, Turkington CR, Evans JC (1974) Grapevine response to furrow and trickle irrigation. Am J Enol Vitic 25:62-66

    Google Scholar 

  • Suelter CH (1974) Monovalent cations in enzyme-catalyzed reactions. Metal Ions in Biological Systems, Vol 3:201–251. Dekker, New York

    CAS  Google Scholar 

  • Van Zyl JK (1984) Response of colombar grapevines to irrigation as regards quality aspects and growth. S Afr Enol Vitic 5:19-28

    Google Scholar 

  • Van Leeuwen C, Friant Ph, Chone X, Tregoat O, Koundouras S, Dubourdieu D (2004) The influence of climate, soil and cultivar on terroir. Am J Enol Vitic 55:207-217

    Google Scholar 

  • Véry AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575-603

    Article  PubMed  Google Scholar 

  • Walker DA (1974) Chloroplast and cell-the movement of certain key substances across the chloroplast envelope. In: Northcote DH (ed) Plant Biochemistry. Butterworth, London

    Google Scholar 

  • Welch RM (1986) Effects of nutrient deficiencies on seed producton and quality. Adv Plant Nutr 2:205-247

    CAS  Google Scholar 

  • Welch RM, Rengel Z (1999) Importance of seed mineral nutrient reserves in crop growth and development. In: Rengel Z (ed) Mineral nutrition of crops: Fundamental mechanisms and implications. Food Products Press, Binghamton

    Google Scholar 

  • Wills R, McGlasson B, Graham, D, Joyce D (1998) Postharvest: An Introduction to the Physiology of Fruit. Vegetables and Ornamentals. UNSW Press, Sindney

    Google Scholar 

  • Winkler AJ, Cook JA, Kliewer WM, Lider LA (1974) General Viticulture. University of California Press, Berkeley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Etchebarne, F., Ojeda, H., Deloire, A. (2009). Grape Berry Mineral Composition in Relation to Vine Water Status & Leaf Area/Fruit Ratio. In: Roubelakis-Angelakis, K.A. (eds) Grapevine Molecular Physiology & Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2305-6_3

Download citation

Publish with us

Policies and ethics