Skip to main content

Grapevine & Sulfur: Old Partners, New Achievements

  • Chapter
Grapevine Molecular Physiology & Biotechnology

The central role of sulfur in biological functions Sulfur (S) is the 14th more abundant element on earth crust (Charlson et al. 1992), the 9th and least abundant essential macronutrient in plants (Saito 2004) and the 6th element in the cytoplasm (Xavier and LeGall 2007). The interconversion of oxidized and reduced sulfur states, the biogeochemical sulfur cycle, depends mainly on microorganisms (Falkowski et al. 2008) and plants. The inorganic forms of S in soil consist mainly of sulfates (SO4 2-) (Mengel and Kirkby 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam-Blondon AF, Romieu C, Bouquet A. (2007) Genomics as a road for grapevine improvement. In: Morot-Gaudry J-F, Lea P, Briat J-F (eds) Functional Plant Genomics. Science Publ, Enfield, NH, pp. 463-480

    Google Scholar 

  • Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G. (2006) Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96:1188-1194

    Article  PubMed  CAS  Google Scholar 

  • Bavaresco L, Fregoni C, van Zeller de Macedo Basto Gonçalves MI, Vezzulli S (2009) Physio logy and molecular biology of grapevine stilbenes – Un update. In: Roubelakis-Angelakis K.A. (ed.), Grapevine Molecular Physiology & Biotechnology, 2nd ed., Springer Science+Business Media B.V., pp. 341-364

    Google Scholar 

  • Bavaresco L, Pezzutto S, Ragga A, Ferrari F, Trevisan M (2001) Effect of nitrogen supply on trans-resveratrol concentration in berries of Vitis vinifera L. cv Cabernet Sauvignon. Vitis 40:229-230

    CAS  Google Scholar 

  • Bick JA, Leustek T (1998) Plant sulfur metabolism – the reduction of sulfate to sulfite. Curr Op Plant Biol 1:240-244

    Article  CAS  Google Scholar 

  • Blake-Kalff MMA, Hawkesford MJ, Zhao FJ, McGrath SP (2000) Diagnosing sulfur deficiency in field-grown oilseed rape (Brassica napus L.) and wheat (Triticum aestivum L.). Plant Soil 225:95-107

    Article  CAS  Google Scholar 

  • Bloem E, Haneklaus S, Salac I, Wickenhäuser P, Schnug E (2007) Facts and fiction about sulfur metabolism in relation to plant-pathogen interactions. Plant Biol 9:596-607

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Davies C (2009) Molecular biology of anthocyanin accumulation in grape berries. In: Roubelakis-Angelakis K.A. (ed.), Grapevine Molecular Physiology & Biotechnology, 2nd ed., Springer Science+Business Media B.V., pp. 263-292

    Google Scholar 

  • Bourbos VA, Skoudridakis MT, Barbopoulou E, Venetis K (2000) Ecological control of grape powdery mildew (Uncinula necato) http://www.landwirtschaft-bw.info/servlet/PB/menu/ 1043197_l1/index.html. Accessed 5 June 2008

  • Bovy A., de Vos R, Kemper M, Schijlen E, Pertejo MA, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, Santos-Buelga C, van Tunen A (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14:2509-2526

    Article  PubMed  CAS  Google Scholar 

  • Brunold C (1976) Regulatory interactions between sulfate and nitrate assimilation. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur Nutrition and Assimilation in Higher Plants. SPB Publ, The Hague, ND, pp. 61-76

    Google Scholar 

  • Buchner P, Takahashi H, Hawkesford MJ (2004) Plant sulfate transporters:co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55:1765-1773

    Article  PubMed  CAS  Google Scholar 

  • Byers M, Franklin J, Smith SJ (1987) The nitrogen and sulfur nutrition of wheat and its effect on the composition and baking quality of the grain. Aspects Appl Biol 15:327-344

    Google Scholar 

  • Charlson RJ, Anderson T, McDuff RE (1992) The sulfur cycle. In: Butcher SS, Charlson RJ, Orians GH, Wolfe GV (eds) Global Biogeochemical Cycles. Academic Press, London, UK, pp. 285-300

    Chapter  Google Scholar 

  • Clarkson DT, Diogo E, Amâncio S (1999) Uptake and assimilation of sulfate by sulfur deficient Zea mays cells:The role of O-acetyl-L-serine in the interaction between nitrogen and sulfur assimilatory pathways. Plant Physiol Biochem 37:283-290

    Article  CAS  Google Scholar 

  • Clarkson DT, Hawkesford MJ, Davidian J-C (1993) Membrane and long-distance transport of sulfate. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur Nutrition and Assimilation in Higher Plants. SPB Publ, The Hague, ND, pp. 3-19

    Google Scholar 

  • dePinho PG, Beloqui AA, Bertrand A (1997) Detection of a sulfur compound responsible for the typical aroma of some non Vitis vinifera wines. Sci Alim 17:341-348

    Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085-1097

    Article  PubMed  CAS  Google Scholar 

  • Droux M (2004) Sulfur assimilation and the role of sulfur in plant metabolism: a survey. Photosynthesis Res 79:331-348

    Article  CAS  Google Scholar 

  • Droux M, Ruffet M-L, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants. Eur J Biochem 255:235-245

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science 320:1034-1039

    Article  PubMed  CAS  Google Scholar 

  • Gadoury DM, Pearson RC, Riegel DG, Seem RC, Becker CM, Pscheidt JW (1994) Reduction of powdery mildew and other diseases by over-the-trellis application of lime sulfur to dormant grapevines. Plant Dis 78:83-87

    Google Scholar 

  • Goes da Silva F, Iandolino A, Al-Kayal F, Bohlmann MC, Cushman MA, Lim H, Ergul A, Figueroa R, Kabuloglu EK, Osborne C, Rowe J, Tattersall E, Leslie A, Xu J, Baek J, Cramer GR, Cushman JC, Cook DR (2005) Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol 139:574-597

    Article  CAS  Google Scholar 

  • Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC (2007) Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics 8:187 (doi:10.1186/1471-2164-8-187)

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Marcos JF, Roberts MA, Campbell EI, Wray JL (1996) Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and APS reductase activity. Proc Natl Acad Sci USA 93:13377-13382

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Marcos JF, Roberts MA, Campbell EI, Wray JL (1997) Molecular evidence supports an APS-dependent pathway of reductive sulfate assimilation in higher plants. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H (eds) Sulfur Metabolism in Higher Plants. Backhuys Publ, Leiden, ND, pp. 187-189

    Google Scholar 

  • Haneklaus S, Bloem E, Schnug E (2007) Sulfur interactions in crop ecosystems. In: Hawkesford MJ, De Kok LJ (eds) Sulfur in Plants. An Ecological Perspective. Springer, Dordrecht, ND, pp. 17-58

    Chapter  Google Scholar 

  • Hatzfeld Y, Cathala N, Grignon C, Davidian J-C (1998) Effect of ATP sulfurylase overexpression in bight yellow 2 tobacco cells. Plant Physiol 116:1307-1313

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford MJ (2000) Plant responses to sulfur deficiency and the genetic manipulation of sulfate transporters to improve S-utilization efficiency. J Exp Bot 51:131-138

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford MJ (2003) Transporter gene families in plants:the sulfate transporter gene family:redundancy or specialization? Physiol Plant 117:155-163

    Article  CAS  Google Scholar 

  • Hawkesford MJ (2005). Sulfur. In: Broadley MR, White PJ (eds) Plant Nutritional Genomics. Blackwell Publ, Oxford, UK, pp. 87-111

    Google Scholar 

  • Hawkesford MJ, De Kok LJ (2006) Managing sulfur metabolism in plants. Plant Cell Environ 29:382-395

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford MJ, Wray JL (2000) Molecular genetics of sulfate assimilation. Adv Bot Res 33:159-223

    Article  CAS  Google Scholar 

  • Hell R, Jost R, Berkowitz O, Wirtz M (2002) Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant Arabidopsis thaliana. Amino Acids 22:245–257

    Article  PubMed  CAS  Google Scholar 

  • Hell R, Kruse C (2007) Sulfur in biotic interactions of plants. In: Hawkesford MJ, De Kok LJ (eds) Sulfur in Plants. An Ecological Perspective. Springer, Dordrecht, ND, pp. 197-224

    Chapter  Google Scholar 

  • Hell R, Schwenn JD, Bork C (1997) Light and sulfur sources of several genes of sulfate assimilation. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H (eds) Sulfur Metabolism in Higher Plants. Backhuys Publ, Leiden, ND, pp. 181-185

    Google Scholar 

  • Hesse H, Höefgen R (2003) Molecular aspects of methionine biosynthesis in Arabidopsis and potato. rends Plant Sci 8:259-262.

    Article  CAS  Google Scholar 

  • Hilbert G, Soyer JP, Molot C, Giraudon J, Milin S, Gaudillere JP (2003) Effects of nitrogen supply on must quality and anthocyanin accumulation in berries of cv. Merlot. Vitis 42:69–76

    CAS  Google Scholar 

  • Hirai MY, Fujiwara T, Awazuhara M, Kimura T, Noji M, Saito K (2003) Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J 33:651-663

    Article  PubMed  CAS  Google Scholar 

  • Hirai MK, Saito K (2004) Post-genomic approaches for the elucidation of plant adaptive mechanisms to sulfur deficiency. J Exp Bot 55:1871-1879

    Article  PubMed  CAS  Google Scholar 

  • Höefgen R, Hesse H (2007) Sulfur in plants as part of a metabolic network In: Hawkesford MJ, De Kok LJ (eds) Sulfur in Plants. An Ecological Perspective. Springer, Dordrecht, ND, pp. 197-224

    Google Scholar 

  • Howarth JR, Roberts MA, Wray JL (1997) Cysteine biosynthesis in higher plants:cloning and expression of three members of the serine acetyl-transferase gene family from Arabidopsis thaliana. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H (eds) Sulfur Metabolism in Higher Plants. Backhuys Publ, Leiden, ND, pp. 231-232

    Google Scholar 

  • Jaillon O, Aury JO, Noel B, et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Jolivet P (1993) Elemental sulfur in agriculture. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur Nutrition and Assimilation in Higher Plants. SPB Publ, The Hague, ND, pp. 3-19

    Google Scholar 

  • Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004a) Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol 136:4198-4204

    Google Scholar 

  • Kataoka T, Maruyama-Nakashita A, Hayashi N, Ohnishi M, Mimura, T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004b) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693-2704

    Google Scholar 

  • Kutz A, Muller A, Hennig P, Kaiser WM, Piotrowski M, Weiler EW (2002) A role of nitrilase 3 in the regulation of root morphology in sulfur-starving Arabidopsis thaliana. Plant J 30:95-106

    Article  PubMed  CAS  Google Scholar 

  • Leustek T, Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120:637-643

    Article  PubMed  CAS  Google Scholar 

  • Leustek T, Martin MN, Bick JÁ, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141-65

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H (2004) Induction of SULTR1;1 sulfate transporter in Arabidopsis roots involves phophorylation /dephosphorylation circuit for transcriptional regulation. Plant Cell Physiol 45:340-345

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of a plant sulfur response and metabolism. Plant Cell 18:3235-3251

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42:,305-314

    Article  PubMed  CAS  Google Scholar 

  • Mengel K, Kirkby EA (1982) Principles of Plant Nutrition, 3rd Ed. Int Potash Inst. Bern, CH 593 pp.

    Google Scholar 

  • Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signalling pathways. Plant Physiol 131:298–308

    Article  PubMed  CAS  Google Scholar 

  • Müller B, Sheen J (2007) Advances in cytokinin signalling. Science 318:68-69

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Akashi T, Hase T (2000) Plant sulfite reductase:molecular structure, catalytic function and interaction with ferredoxin. J Inorg Biochem 82:27-32

    Article  PubMed  CAS  Google Scholar 

  • Newenschwander U, Suter ME, Brunold C (1991) Regulation of sulfate assimilation by light and O-acetyl-L-serine in Lemna minor L. Plant Physiol 97:253-258

    Article  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205-217

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW:an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357-358

    Google Scholar 

  • Pate JS (1980) Transport and partitioning of nitrogenous solutes. Annu Rev Plant Physiol 31:313-340

    Article  CAS  Google Scholar 

  • Peuke A (2000) The chemical composition of xylem sap in Vitis vinifera L. cv. Riesling during vegetative growth on three different franconian vineyard soils and as influenced by nitrogen fertilizer. Am J Enol Vitic 51:329-339

    CAS  Google Scholar 

  • Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95:7805-7812

    Article  PubMed  CAS  Google Scholar 

  • Rausch T (2007) When plant life gets tough sulfur gets going. Plant Biol 9:551-555

    Article  PubMed  CAS  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defense operations. Trends Plant Sci 10:503-509

    Article  PubMed  CAS  Google Scholar 

  • Schutz M, Kunkee R (1977). Formation of hydrogen sulfide from elemental sulfur during fermentation by wine yeast. Am J Enol Vitic 28:133-144

    Google Scholar 

  • Rotte C, Leustek T (2000) Differential subcellular localization and expression of ATP sulfurylase and 5’- adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytososlic and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiol 124:715-724

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot J-P (2008) The role of glutathione in photosynthetic organisms:Emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59: 143–66

    Article  PubMed  CAS  Google Scholar 

  • Saito K (2004) Sulfur assimilation metabolism. The long and smelling road. Plant Physiol 136: 2443-2450

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Takahashi H, Takagi Y, Inoue K, Noji M (1997) Molecular characterization and regulation of cysteine synthase and serine acetyltransferase from plants. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H (eds) Sulfur Metabolism in Higher Plants. Backhuys Publ, Leiden, ND, pp. 235-238

    Google Scholar 

  • Schachtman DP, Shin R (2007) Nutrient sensing and signalling: NPKS. Annu Rev Plant Biol 58: 47-69

    Article  PubMed  CAS  Google Scholar 

  • Schnug E (1997) Significance of sulfur for the quality of domesticated plants. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H (eds) Sulfur Metabolism in Higher Plants. Backhuys Publ, Leiden, ND, pp. 109-130

    Google Scholar 

  • Shibagaki N, Rose A, Mcdermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify SULTR1;2 a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475-486

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci U.S.A. 92:9373-9377

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, van den Berg PJ, Belcher AR, Warrilow AGS (1997) Regulation of expression of a cDNA from barley roots enconding a high affinity sulfate transporter. Plant J 12:875-884

    Article  PubMed  CAS  Google Scholar 

  • Stulen I, De Kok LJ (1993) Whole plant regulation of sulfate uptake and metabolism – a theorectical approach and comparison with current ideas on regulation of nitrogen metabolism. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur Nutrition and Assimilation in Higher Plants. SPB Publ, The Hague, ND, pp. 77-91

    Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulfate transporters involved in uptake and translocation of sulfate in Arabidopsis thaliana. Plant J 23:171-182

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, de Almeida-Engler J, Engler G, van Montagu M, Saito K (1997) Regulation of sulfur in higher plants:a sulfate transporter induced in sulfate starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci U.S.A. 94:11102-11107

    Article  PubMed  CAS  Google Scholar 

  • Tavares S, Sousa C, Carvalho LC, Amâncio S (2008) De-repressed transporters are strongly repressed after sulfate addition to sulfur depleted Vitis cells. Int J Plant Sci 169 (in press)

    Google Scholar 

  • Thomma BPHJ, Cammue BPA, Thevissen K (2002) Plant defensins. Planta 216:193-202

    Article  PubMed  CAS  Google Scholar 

  • Thomas CS, Gubler WD, Silacci MW, Miller R (1993) Changes in elemental sulfur residues on Pinot-Noir and Cabernet Sauvignon grape berries during the growing-season. Am J Enol Vitic 44:205-210

    CAS  Google Scholar 

  • Vauclare P, Stanislav K, Fell D, Suter M, Sticher L, von Ballmoos P, Krähenbühl U, Op de Camp R, Brunold C (2002) Flux control of sulfate assimilation in Arabidopsis thaliana: adenosine 5’-phosphosulfate reductase is more susceptible than ATP sulfurylase to negative control by thiols. Plant J 31:729-740

    Article  PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2(12): e1326. doi:10.1371/journal.pone.0001326

    Article  PubMed  CAS  Google Scholar 

  • Vidmar J, Tagmount A, Cathala N, Touraine B, Davidian J-C (2000) Cloning and characterization of root specific high-affinity sulfate transporter from Arabidopsis thaliana. FEBS Letts 475: 65-69

    Article  CAS  Google Scholar 

  • Williams JS, Cooper RM (2003) Elemental sulfur is produced by diverse plant families as a component of defense against fungal and bacterial pathogens. Physiol Mol Plant Pathol 63:3-16

    Article  CAS  Google Scholar 

  • Williams JS, Cooper RM (2004) the oldest fungicide and newest phytoalexin – a re-appraisal of the fungitoxicity of elemental sulfur. Plant Pathol 53:263-279

    Article  CAS  Google Scholar 

  • Williams JS, Hall AS, Hawkesford MJ, Beale MH, Cooper RM (2002) Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular pathogen. Plant Physiol 128: 150-159

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003) Phloem-localizing sulfate transporter, Sultr 1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131:1511-1517

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporter with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29:465-473

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–74

    Article  PubMed  CAS  Google Scholar 

  • Xavier AV, LeGall J (2007) Sulfur metabolism. In: Bertini I, Gray HB, Stiefel EI, Valentine JS (eds) Biological Inorganic Chemistry. University Science Books, Sausalito, CA, pp. 508-517

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Amâncio, S., Tavares, S., Fernandes, J., Sousa, C. (2009). Grapevine & Sulfur: Old Partners, New Achievements. In: Roubelakis-Angelakis, K.A. (eds) Grapevine Molecular Physiology & Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2305-6_2

Download citation

Publish with us

Policies and ethics