Cellular and Humoral Markers of Tissue Damage

  • W. Uracz
  • R. J. Gryglewski


Patients with sepsis who are hospitalized in intensive care units frequently develop multiple organ dysfunction failure syndrome (MODFS) with a poor prognosis (1-3). It is believed that injury in MOFDS is brought about by factors which under normal conditions play a regulatory role in homeostatic mechanisms Table(1).


Septic Shock Systemic Inflammatory Response Syndrome Tumor Necrosis Factor Activity Humoral Marker Tumor Necrosis Factor Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barton R, Cerra FB, (1989) The hypermetabolism. Multiple organ failure syndrome. Chest 96:1153–1160PubMedCrossRefGoogle Scholar
  2. 2.
    Baue AE (1994) Organ dysfunction (MODS), organ failure (MOF) and therapeutic conundrums in injured and septic patients. In: Gullo A (ed) Sepsis and organ failure. Fogliazza editore, Trieste, pp 9–39Google Scholar
  3. 3.
    Baue AE (1992) The horror autotoxicus and multiple-organ failure. Arch Surg 127:1451–1462PubMedCrossRefGoogle Scholar
  4. 4.
    Schlossman SF, Boumsell L, Gilks W, Harian JM, Kishimoto T, Morimoto C, Ritz J, Shaw S, Silverstein RL, Springer TA, Tedder TF, Todd RF (1993) CD antigens 1993. Immonol Today 15:98–99CrossRefGoogle Scholar
  5. 5.
    Puppo F, Scudeletti M, Indiveri F, Ferrone S (1995) Serum class I antigens: markers and modulators of an immune response? Immonol Today 16:124–127CrossRefGoogle Scholar
  6. 6.
    Ferrone S, Yamamura M, Grosse-Wilde H, Pouletty P (1992) Summary of serum-soluble HLA class I antigen component. In: Kimiyoshi Tsuji MA (ed) HLA 1991. Oxford, New York, pp 1057–1061Google Scholar
  7. 7.
    Haanen C, Vermes I (1995) Apoptosis and inflammation. Mediators of Inflammation 4:5–15PubMedCrossRefGoogle Scholar
  8. 8.
    Vermes I, Haanen C (1994) Apoptosis and programmed cell death in health and disease. Adv Clin Chem 31:177–246PubMedCrossRefGoogle Scholar
  9. 9.
    Darville T, Giroir B, Jacobs R (1993) The systemic inflammatory response syndrome (SIRS): immunology and potential immunotherapy. Infection 21:279–290PubMedCrossRefGoogle Scholar
  10. 10.
    Lynn WA, Cohen J (1995) Adjunctive therapy for septic shock: a review of experimental approaches. CID 20:143–158CrossRefGoogle Scholar
  11. 11.
    Manthous CA, Hall JB, Samsel RW (1993) Endotoxin in human disease. Part 2: Biologic effects and clinical evaluations of anti-endotoxin therapies. Chest 104:1872–1881PubMedCrossRefGoogle Scholar
  12. 12.
    Gawaz M, Fateh-Moghadam S, Pilz G, Guriand H-J, Werdan K (1995) Severity of multiple organ failure (MOF) but not of sepsis correlates with irreversible platelet degranulation. Infection 1:16–23CrossRefGoogle Scholar
  13. 13.
    Cavaillon J-M (1995) Controversies surrounding current therapies for sepsis syndrome. Bull Inst Pasteur 93:21–41CrossRefGoogle Scholar
  14. 14.
    Talan DA (1993) Recent developments in our understanding of sepsis: evaluation of anti-endotoxin antibodies and biological response modifiers. Ann Emerg Med 22:1871–1890PubMedCrossRefGoogle Scholar
  15. 15.
    St. John RC, Dorinsky PM (1993) Immunologic therapy for ARDS, septic shock, and multiple-organ failure. Chest 103:932–943CrossRefGoogle Scholar
  16. 16.
    Bar Natan MF, Wilson MA, Spain DA, Garrison RN (1995) Platelet-activating factor and sepsis-induced small intestinal microvascular hypoperfusion. J Surg Res 58:38–45PubMedCrossRefGoogle Scholar
  17. 17.
    Lin RY, Astiz ME, Saxon JC, Rackow EC (1993) Altered leukocyte immunophenotypes in septic shock. Studies of HLA-DR, CDl lb, CD14, and IL-2R expression. Chest 104:847–853PubMedCrossRefGoogle Scholar
  18. 18.
    Lin RY, Astiz ME, Saxon JC, Saha DC, Rackow EC (1993) Alterations in C3, C4, factor B, and related metabolites in septic shock [see comments]. Clin Immunol Immunopathol 69: 136–142PubMedCrossRefGoogle Scholar
  19. 19.
    Busund R, Lindsetmo RO, Rasmussen LT, Rokke O, Rekvig OP, Revhaug A (1991) Tumor necrosis factor and interleukin 1 appearance in experimental gram-negative septic shock. The effects of plasma exchange with albumin and plasma infusion. Arch Surg 126:591–597PubMedCrossRefGoogle Scholar
  20. 20.
    van Deuren M, van der Ven Jongekrijg J, Demacker PN, Bartelink AK, van Dalen R, Sauerwein RW, Gallati H, Vannice JL, van der Meer JW (1994) Differential expression of proinflammatory cytokines and their inhibitors during the course of meningococcal infections. J Infect Dis 169:157–161PubMedCrossRefGoogle Scholar
  21. 21.
    Korbut R, Warner TD, Gryglewski RJ, Vane JR (1994) The effect of nitric oxide synthase inhibition on the plasma fibrinolytic system in septic shock in rats. Br J Pharmacol 112: 289–291PubMedGoogle Scholar
  22. 22.
    Smith MFJ, Eidlen D, Arend WP, Gutierrez Hartmann A (1994) LPS-induced expression of the human IL-1 receptor antagonist gene is controlled by multiple interacting promoter elements. J Immunol 153:3584–3593PubMedGoogle Scholar
  23. 23.
    Glauser MP, Heumann D, Baumgartner JD, Cohen J (1994) Pathogenesis and potential strategies for prevention and treatment of septic shock: an update. Clin Infect Dis 18 (Suppl 2):S205-S216PubMedCrossRefGoogle Scholar
  24. 24.
    Parrillo JE (1993) Pathogenetic mechanisms of septic shock [see comments]. N Engl J Med 328:1471–1477PubMedCrossRefGoogle Scholar
  25. 25.
    Schumann RR, Rietschel ET, Loppnow H (1994) The role of CD14 and lipopolysaccharide- binding protein (LBP) in the activation of different cell types by endotoxin. Med Microbiol Immunol 183:279–297PubMedCrossRefGoogle Scholar
  26. 26.
    Manthous CA, Hall JB, Samsel RW (1993) Endotoxin in human disease. Part 1: Biochemistry, assay, and possible role in diverse disease states. Chest 104:1572–1581PubMedCrossRefGoogle Scholar
  27. 27.
    Levin J, Tomasulo PA, Oser RJ (1970) Detection of endotoxin in blood and demonstration of an inhibitor. J Lab Clin Med 75:903–911PubMedGoogle Scholar
  28. 28.
    Danner RL, Ehn RJ, Hosseini JM, Wesley RA, Reilly JM, Parillo JE (1991) Endotoxemia in human septic shock. Chest 99:169–175PubMedCrossRefGoogle Scholar
  29. 29.
    Bagasra O, Wright SD, Seshamma T, Oakes JW, Pomerantz RJ (1992) CD14 is involved in control of human immunodeficiency virus type 1 expression in latently infected cells by lipopolysaccharide. Proc Natl Acad Sci USA 89:6285–6289PubMedCrossRefGoogle Scholar
  30. 30.
    Machleidt T, Wiegmann K, Henkel T, Schutze S, Baeuerie P, Kronke M (1994) Sphingomyelinase activates proteolytic I kappa B-alpha degradation in a cell-free system. J Biol Chem 269:13760–13765PubMedGoogle Scholar
  31. 31.
    Mohri M, Spriggs DR, Kufe D (1990) Effects of lipopolysaccharide on phospholipase A2 activity and tumor necrosis factor expression in HL-60 cells. J Immunol 144:2678–2682PubMedGoogle Scholar
  32. 32.
    Raines MA, Kolesnick RN, Golde DW (1993) Sphingomyelinase and ceramide activate mitogen-activated protein kinase in myeloid HL-60 cells. J Biol Chem 268:14572–14575PubMedGoogle Scholar
  33. 33.
    Pushkavera M, Obdeid LM, Hannun YA (1995) Ceramide: an endogenous regulator of apoptosis and growth suppression. Immonol Today 16:294–297CrossRefGoogle Scholar
  34. 34.
    Kawasaki S, Moriguchi R, Sekiya K, Nakai T, Ono E, Kume K, Kawahara K (1994) The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobihs. J Bacteriol 176:284–290PubMedGoogle Scholar
  35. 35.
    Wright SD, Kolesnick RN (1995) Does endotoxin stimulate cells by mimicking ceramide? Immonol Today 16:297–302CrossRefGoogle Scholar
  36. 36.
    Hampton RY, Golenbock DT, Penman M, Krieger M, Raetz CR (1991) Recognition and plasma clearance of endotoxin by scavenger receptors. Nature 352:342–344PubMedCrossRefGoogle Scholar
  37. 37.
    Ziegler-Heitbrock HWL, Ulevitch RJ (1993) CD14: cell surface receptor and differentiation marker. Immonol Today 14:121–125CrossRefGoogle Scholar
  38. 38.
    Goyer DT, Ferrerò E, Retting WJ, Yenamandra AK, Obata F, LeBeau MM (1988) The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptors. Science 239:497–500CrossRefGoogle Scholar
  39. 39.
    Greenman RL, Schein RM, Martin MA, Wenzel RP, Maclntyre NR, Emmanuel G, Chmel H, Kohler RB, McCarthy M, Plouffe J et al (1991) A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis. The XOMA Sepsis Study Group [see comments]. JAMA 266:1097–1102PubMedCrossRefGoogle Scholar
  40. 40.
    Teng NNH, Kaplan HS, Herbert JM (1985) Protection against Gram-negative bacteremia and endotoxemia with human monoclonal IgM antibodies. Proc Natl Acad Sci USA 82:1790–1794PubMedCrossRefGoogle Scholar
  41. 41.
    Frey EA, Miller DS, Jahr TG, Sundan A, Bazil V, Espevik T, Finlay BB, Wright SD (1992) Soluble CD14 participates in the response of cells to hpopolysaccharide. J Exp Med 176: 1665–1671PubMedCrossRefGoogle Scholar
  42. 42.
    Simpson SQ, Casey LC (1989) Role of tumor necrosis factor in sepsis and acute lung injury. Crit Care Clin 5:27–47PubMedGoogle Scholar
  43. 43.
    Champan PB, Lester TJ, Casper ES, Gabrolove JL, Wong GY, Kempin SJ, Gold PJ, Welt S, Warren RS, Starnes F, Sherwin SA, Old LJ, Oettgen HF (1987) Clinical pharmacology of recombinant human tumour necrosis factor in patients with advanced cancer. J Clin Oncol 5:1942–1951Google Scholar
  44. 44.
    Bone RC (1991) The pathogenesis of sepsis. Ann Intern Med 115:457–469PubMedGoogle Scholar
  45. 45.
    Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J Exp Med 169:333–338PubMedCrossRefGoogle Scholar
  46. 46.
    Wong GC, Clark SC (1988) Multiple actions of interleukin 6 within a cytokine network. Immonol Today 9:137–139CrossRefGoogle Scholar
  47. 47.
    Hack CE, De Groot ER, Felt Bersma RJ, Nuijens JH, Strack Van Schijndel RJ, Eerenberg Belmer AJ, Thijs LG, Aarden LA (1989) Increased plasma levels of interleukin-6 in sepsis [see comments]. Blood 74:1704–1710PubMedGoogle Scholar
  48. 48.
    van der Poll T, Levi M, Hack CE, ten Cate H, van Deventer SJ, Eerenberg AJ, De Groot ER, Jansen J, Gallati H, Buller HR et al (1994) Ehmination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees. J Exp Med 179:1253–1259PubMedCrossRefGoogle Scholar
  49. 49.
    Martich GD, Danner RL, Ceska M, Suffredini AF (1991) Detection of interleukin 8 and tumor necrosis factor in normal humans after intravenous endotoxin: the effect of antiinflammatory agents. J Exp Med 173:1021–1024PubMedCrossRefGoogle Scholar
  50. 50.
    Baggiolini M, Walz A, Kunkel SL (1989) Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest 84:1045–1049PubMedCrossRefGoogle Scholar
  51. 51.
    Leonard EJ, Yoshimura T (1990) Neutrophil attractant/activation protein-1 (NAP-1 [interleukin-8]). Am J Respir Cell Mol Biol 2:479–486PubMedGoogle Scholar
  52. 52.
    Leonard EJ, Yoshimura T (1990) Human monocyte chemoattractant protein-1 (MCP-1). Immunol Today 11:97–101PubMedCrossRefGoogle Scholar
  53. 53.
    Carveth HJ, Bohnsack JF, Mclntyre TM, Baggiolini M, Prescott SM, Zimmerman GA (1989) Neutrophil activating factor (NAF) induces polymorphonuclear leukocyte adherence to endothelial cells and to subendothelial matrix proteins. Biochem Biophys Res Commun 162:387–393PubMedCrossRefGoogle Scholar
  54. 54.
    Detmers PA, Lo SK, Olsen Egbert E, Walz A, Baggiolini M, Cohn ZA (1990) Neutrophil- activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CDllb/CD18 on human neutrophils. J Exp Med 171:1155–1162PubMedCrossRefGoogle Scholar
  55. 55.
    Mizer LA, Weisbrode SE, Dorinsky PM (1989) Neutrophil accumulation and structural changes in nonpulmonary organs after acute lung injury induced by phorbol myristate acetate. Am Rev Respir Dis 139:1017–1026PubMedGoogle Scholar
  56. 56.
    Weiss SJ (1989) Tissue destruction by neutrophils [see comments]. N Engl J Med 320: 365–376PubMedCrossRefGoogle Scholar
  57. 57.
    Argenbright LW, Letts LG, Rothlein R (1991) Monoclonal antibodies to the leukocyte membrane CD 18 glycoprotein complex and to intercellular adhesion molecule-1 inhibit leukocyte-endothelial adhesion in rabbits. J Leukoc Biol 49:253–257PubMedGoogle Scholar
  58. 58.
    Chang HR, Vesin C, Grau GE, Pointaire P, Arsenijevic D, Strath M, Pechere JC, Piguet PF (1993) Respective role of polymorphonuclear leukocytes and their integrins (CDl 1/118) in the local or systemic toxicity of lypopolysaccharide. J Leukoc Biol 53:636–639PubMedGoogle Scholar
  59. 59.
    Morisaki T, Goya T, Toh H, Nishihara K, Torisu M (1991) The anti Mac-1 monoclonal antibody inhibits neutrophil sequestration in lung and liver in a septic murine model. Clin Immunol Immunopathol 61:365–375PubMedCrossRefGoogle Scholar
  60. 60.
    Burch RM, Noronha Blob L, Bator JM, Lowe VC, Sullivan JP (1993) Mice treated with a leumedin or antibody to Mac-1 to inhibit leukocyte sequestration survive endotoxin challenge. J Immunol 150:3397–3403PubMedGoogle Scholar
  61. 61.
    Klein B, Brailly H (1995) Cytokine-binding proteins: stimulating antagonist. Immonol Today 16:216–220CrossRefGoogle Scholar
  62. 62.
    Klein B, Wijdenes J, Zhang XG, Jourdan M, Boiron JM, Brochier J, Liautard J, Merhn M, Clement C, Morel Fournier B et al (1991) Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood 78:1198–1204PubMedGoogle Scholar
  63. 63.
    Franslow WC, Sims JE, Sassenfeld H, Morrissey PJ, Gilhs S, Dower SK, Widmer MB (1990) Regulation of alloreactivity in vivo by a soluble form of the interleukin-1 receptor. Science 248:739–742CrossRefGoogle Scholar
  64. 64.
    Fischer E, Van Zee KJ, Marano MA, Rock CS, Kenney JS, Poutsiaka DD, Dinarello CA, Lowry SF, Moldawer LL (1992) Interleukin-1 receptor antagonist circulates in experimental inflammation and in human disease. Blood 79:2196–2200PubMedGoogle Scholar
  65. 65.
    Granowitz EV, Porat R, Mier JW, Orencole SF, Callahan MV, Cannon JG, Lynch EA, Ye K, Poutsiaka DD, Vannier E et al (1993) Hematologic and immunomodulatory effects of an interleukin-1 receptor antagonist coinfusion during low-dose endotoxemia in healthy humans. Blood 82:2985–2990PubMedGoogle Scholar
  66. 66.
    Rogy MA, Moldawer LL, Oldenburg HS, Thompson WA, Montegut WJ, Stackpole SA, Kumar A, Palladino MA, Marra MN, Lowry SF (1994) Anti-endotoxin therapy in primate bacteremia with HA-IA and BPL Ann Surg 220:77–85Google Scholar
  67. 67.
    Dinarello CA (1993) Modalities for reducing interleukin-1 activity in disease. Immonol Today 14:260–264CrossRefGoogle Scholar
  68. 67.
    Cariet J, Cohen J, Andersson J (1994) INTERSEPT: an international efficacy and safety study of monoclonal antibody to human TNF in patients with sepsis syndrome. In: Program and Abstracts of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Washington DCGoogle Scholar
  69. 69.
    Ertel W, Scholl FA, Gallati H, Bonaccio M, Schildberg FW, Trentz O (1994) Increased release of soluble tumor necrosis factor receptors into blood during clinical sepsis. Arch Surg 129:1330–1336PubMedCrossRefGoogle Scholar
  70. 70.
    Rose John S, Heinrich PC (1994) Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J 300:281–290PubMedGoogle Scholar
  71. 71.
    Ashkenazi A, Marsters SA, Capon DJ, Chamow SM, Figari IS, Pennica D, Goeddel DV, Palladino MA, Smith DH (1991) Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. Proc Natl Acad Sci USA 88:10535–10539PubMedCrossRefGoogle Scholar
  72. 72.
    Kürschner C, Ozmen L, Garotta G, Dembic Z (1992) IFN-gamma receptor-Ig fusion proteins. Half-life, immunogenicity, and in vivo activity. J Immunol 149:4096–4100PubMedGoogle Scholar
  73. 73.
    Lesslauer W, Tabuchi H, Gentz R, Brockhaus M, Schlaeger EJ, Grau G, Piguet PF, Pointaire P, Vassalh P, Loetscher H (1991) Recombinant soluble tumor necrosis factor receptor proteins protect mice from lipopolysaccharide-induced lethahty. Eur J Immunol 21:2883–2886PubMedCrossRefGoogle Scholar
  74. 74.
    Peppel K, Crawford D, Beutler B (1991) A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity. J Exp Med 174:1483–1489PubMedCrossRefGoogle Scholar
  75. 75.
    Schade UF (1990) Pentoxifylline increases survival in murine endotoxin shock and decreases formation of tumor necrosis factor. Circ Shock 31:171–181PubMedGoogle Scholar
  76. 76.
    Gadina M, Bertini R, Mengozzi M, Zandalasini M, Mantovani A, Ghezzi P (1991) Protective effect of chlorpromazine on endotoxin toxicity and TNF production in glucocorticoid- sensitive and glucocorticoid-resistant models of endotoxic shock. J Exp Med 173:1305–1310PubMedCrossRefGoogle Scholar
  77. 77.
    Gonzalo JA, Gonzalez Garcia A, Kalland T, Hedlund G, Martinez C, Kroemer G (1993) Linomide, a novel immunomodulator that prevents death in four models of septic shock. Eur J Immunol 23:2372–2374PubMedCrossRefGoogle Scholar
  78. 78.
    Grundmann HJ, Hahnle U, Hegenscheid B, Sahlmuller G, Bienzle U, Blitstein Willinger E (1992) Inhibition of endotoxin-induced macrophage tumor necrosis factor expression by a prostacyclin analogue and its beneficial effect in experimental lipopolysaccharide intoxication. J Infect Dis 165:501–505PubMedCrossRefGoogle Scholar
  79. 79.
    Novogrodsky A, Vanichkin A, Patya M, Gazit A, Osherov N, Levitzki A (1994) Prevention of lipopolysaccharide-induced lethal toxicity by tyrosine kinase inhibitors. Science 264: 1319–1322PubMedCrossRefGoogle Scholar
  80. 80.
    Tzung SP, Mahl TC, Lance P, Andersen V, Cohen SA (1992) Interferon-alpha prevents endotoxin-induced mortality in mice. Eur J Immunol 22:3097–3101PubMedCrossRefGoogle Scholar
  81. 81.
    Rhynes VK, McDonald JC, Gelder FB, Aultman DF, Hayes JM, McMillan RW, Mancini MC (1993) Soluble HLA class I in the serum of transplant recipients. Ann Surg 217:485–489PubMedCrossRefGoogle Scholar
  82. 82.
    Zavazava N, Böttcher H, Ruchholtz WM (1993) Soluble MHC class I antigens (sHLA) and anti-HLA antibodies in heart and kidney allograft recipients. Tissue Antigens 42:20–26PubMedCrossRefGoogle Scholar
  83. 83.
    Zhang H, Benlabed M, Spapen H, Nguyen DN, Vincent JL (1994) Prostaglandin El increases oxygen extraction capabilities in experimental sepsis. J Surg Res 57:470–479PubMedCrossRefGoogle Scholar
  84. 84.
    Kuipers B, van der Poll T, Levi M, van Deventer SJ, ten Cate H, Imai Y, Hack CE, ten Cate JW (1994) Platelet-activating factor antagonist TCV-309 attenuates the induction of the cytokine network in experimental endotoxemia in chimpanzees. J Immunol 152:2438–2446PubMedGoogle Scholar
  85. 85.
    Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329: 2002–2012PubMedCrossRefGoogle Scholar
  86. 86.
    Szabo C, Thiemermann C (1995) Invited opinion: role of nitric oxide in hemorrhagic, traumatic, and anaphylactic shock and thermal injury. Shock 2:145–155CrossRefGoogle Scholar
  87. 87.
    Szabo C, Southan GJ, Thiemermann C (1994) Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci USA 91:12472–12476PubMedCrossRefGoogle Scholar
  88. 88.
    Vallance P, Moncada S (1994) Nitric oxide-from mediator to medicines. J R Coll Physicians Lond 28:209–219PubMedGoogle Scholar
  89. 89.
    Vallance P, Moncada S (1994) Drugs that alter nitric oxide homeostasis: a reply [letter; comment]. Cardiovasc Res 28:284PubMedCrossRefGoogle Scholar
  90. 90.
    Vallance P (1994) Nitric oxide in clinical arena. Biochemist 16:23–28Google Scholar
  91. 91.
    Wang P, Ba ZF, Chaudry IH (1994) Nitric oxide. To block or enhance its production during sepsis? Arch Surg 129:1137–1142PubMedCrossRefGoogle Scholar
  92. 92.
    Vallance P, Collier J, Moncada S (1989) Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man [see comments]. Lancet 2:997–1000PubMedCrossRefGoogle Scholar
  93. 93.
    Vallance P (1989) The interplay between platelet and vessel-wall mediators in coronary artery occlusion. Biomed Pharmacother 43:113–119PubMedCrossRefGoogle Scholar
  94. 94.
    Benjamin N, Vallance P (1994) Plasma nitrite as a marker of nitric oxide production [letter]. Lancet 344:960PubMedCrossRefGoogle Scholar
  95. 95.
    Lin PJ, Chang C-H, Chang J-P (1994) Reversal of refractory hypotension in septic shock by inhibitor of nitric oxide synthase. Chest 106:626–629PubMedCrossRefGoogle Scholar
  96. 96.
    Petros A, Lamb G, Leone A, Moncada S, Bennett D, Vallance P (1994) Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res 28:34–39PubMedCrossRefGoogle Scholar
  97. 97.
    Southan GJ, Szabo C, Thiemermann C (1995) Isothioureas: potent inhibitors of nitric oxide synthases with variable isoform selectivity. Br J Pharmacol 114:510–516PubMedGoogle Scholar
  98. 98.
    Earnshaw WC (1995) Apoptosis: lessons from in vitro systems. Trends Cell Biol 5:217–220PubMedCrossRefGoogle Scholar
  99. 99.
    Hawkins CJ, Vaux DL (1994) Analysis of the role of bcl-2 in apoptosis. Immunol Rev 142: 127–139PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1996

Authors and Affiliations

  • W. Uracz
  • R. J. Gryglewski

There are no affiliations available

Personalised recommendations