Skip to main content

Conservative Treatment: LASER (Biostimulation and Minimally Invasive Surgical Treatment)

  • 1357 Accesses

Abstract

Several studies have shown a positive effect of low-level laser therapy (LLLT) using different wavelengths (argon, CO2, He-neon, Er:YAG, diode, Nd:YAG, and KTP) on the healing process in a wide range of cutaneous, mucosal, and bone disorders. LLLT reportedly stimulates osteoclast activity to promote bone resorption and remodeling. Soft-tissue healing is also improved by LLLT. The transformation of fibroblasts into myofibroblasts can accelerate the healing of skin and mucosa. In particular, in conditions characterized by avascular necrosis, such as bisphosphonates-induced osteonecrosis of the jaw (BIONJ), it is essential to stimulate vascularization and soft-tissue tropism through an increase in blood flow by means of angiogenesis, capillary growth, and an increase in growth factor release. Laser can be used in the conservative surgical treatment of BIONJ patients. The procedure involves the vaporization of necrotic bone until healthy bone is reached. The minimal penetration of the erbium laser (0.1 mm) guarantees safety and allows for precise, minimally invasive surgery, inducing a much lower increase in bone temperature than conventional rotary tools (cold ablation). One undoubted advantage of this technique for BIONJ patients is the bactericidal action of the laser beam, in particular versus Actinomyces and anaerobes species. These considerations support the effectiveness of LLLT in the treatment of jawbone and mucosal defects related to BIONJ development or following tooth extractions in patients under bisphosphonates therapy. Thus, minimally invasive laser-assisted surgical treatment appears to be a promising approach for BIONJ management.

Keywords

  • BRONJ laser treatment
  • Osteonecrosis laser treatment
  • Low-Level Laser Therapy
  • Laser biostimulation
  • Laser surgery
  • Minimally invasive surgery
  • Bone surgery
  • Neodymium laser
  • Erbium laser
  • Diode laser
  • Erbium laser surgery

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-88-470-2083-2_12
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-88-470-2083-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7
Fig. 12.8
Fig. 12.9
Fig. 12.10
Fig. 12.11
Fig. 12.12
Fig. 12.13

References

  1. Sonis ST, Watkins BA, Lyng GD, Lerman MA, Anderson KC (2009) Bony changes in the jaws of rats treated with zoledronic acid and dexamethasone before dental extractions mimic bisphosphonate-related osteonecrosis in cancer patients. Oral Oncol 45:164–172

    PubMed  CrossRef  CAS  Google Scholar 

  2. Fleisch H (1998) Bisphosphonates: mechanisms of action. Endocr Rev 19:80–100

    PubMed  CrossRef  CAS  Google Scholar 

  3. Sarin J, DeRossi SS, Akintoye SO (2008) Updates on bisphosphonates and potential pathobiology of bisphosphonate-induced jaw osteonecrosis. Oral Dis 14:277–285

    PubMed  CrossRef  CAS  Google Scholar 

  4. Reid IR, Bolland MJ, Grey AB (2007) Is bisphosphonate-associated osteonecrosis of the jaw caused by soft tissue toxicity? Bone 41:318–320

    PubMed  CrossRef  CAS  Google Scholar 

  5. Landesberg R, Cozin M, Cremers S et al (2008) Inhibition of oral mucosal cell wound healing by bisphosphonates. J Oral Maxillofac Surg 66:839–847

    PubMed  CrossRef  Google Scholar 

  6. Green JR (2004) Bisphosphonates: preclinical review. Oncologist 9:3–13

    PubMed  CrossRef  CAS  Google Scholar 

  7. Vescovi P, Merigo E, Meleti M, Manfredi M (2006) Bisphosphonate-associated osteonecrosis (BON) of the jaws: a possible treatment? J Oral Maxillofac Surg 64:1460–1462

    PubMed  CrossRef  Google Scholar 

  8. Gutknecht N (2007) Proceedings of the 1st international workshop of evidence-based dentistry on laser in dentistry. Quintessence Publishing, Chicago

    Google Scholar 

  9. Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP (2004) Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:693–700

    PubMed  CrossRef  Google Scholar 

  10. Bradley P, Tunér J (2007) Laser phototherapy in dentistry. In: Proceedings of the 1st international workshop of evidence-based dentistry on laser in dentistry. Quintessence Publishing, Chicago

    Google Scholar 

  11. Bjordal JM, Couppé C, Chow RT, Tunér J, Ljunggren EA (2003) A systematic review of low level laser therapy with location-specific doses for pain from chronic disorders. Aust J Physiother 49:107–116

    PubMed  Google Scholar 

  12. Bjordal JM (2005) Can a Cochrane review in controversial areas be biased? A sensitivity analysis based on the protocol of a systematic Cochrane review low level laser therapy in osteoarthritis. Photomed Laser Surg 23:453–458

    PubMed  CrossRef  Google Scholar 

  13. Garavello-Freitas I, Baranauskas V, Joazeiro PP et al (2003) Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats. J Photochem Photobiol B 70:81–89

    PubMed  CrossRef  CAS  Google Scholar 

  14. Medrado AR, Pugliese LS, Reis SR, Andrade ZA (2003) Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med 32:239–244

    PubMed  CrossRef  Google Scholar 

  15. Bayat M, Vasheghani MM, Razavi N (2006) Effect of low-level helium-neon laser therapy on the healing of third-degree burns in rats. J Photochem Photobiol B 83:87–93

    PubMed  CrossRef  CAS  Google Scholar 

  16. Pessoa ES, Melhado RM, Theodoro LH, Garcia VG (2004) A histologic assessment of the influence of low-intensity laser therapy on wound healing in steroid-treated animals. Photomed Laser Surg 22:199–204

    PubMed  CrossRef  Google Scholar 

  17. Rabelo SB, Villaverde AB, Nicolau R, Salgado MC, Melo Mda S, Pacheco MT (2006) Comparison between wound healing in induced diabetic and nondiabetic rats after low-level laser therapy. Photomed Laser Surg 24:474–479

    PubMed  CrossRef  Google Scholar 

  18. Sedghizadeh PP, Kumar SK, Gorur A, Schaudinn C, Shuler CF, Costerton JW (2008) Identification of microbial biofilms in osteonecrosis of the jaws secondary to bisphosphonate therapy. J Oral Maxillofac Surg 66:767–775

    PubMed  CrossRef  Google Scholar 

  19. Rocca J-P (2008) Les lasers en odontologie. Editions CdP—Wolters Kluver France—Avril

    Google Scholar 

  20. Gutknecht N, Raoufi P, Frenzen R, Lampert F (2002) Reduction of specific microorganism in periodontal pockets with the aim of an Nd:YAG laser. An in vivo study. J Oral Laser Appl 2:175–180

    Google Scholar 

  21. Folwaczny M, Mehl A, Jordan C, Hickel R (2002) Antibacterial effects of pulsed Nd:YAG laser radiation at different energy settings in root canals. J Endod 1:24–29

    CrossRef  Google Scholar 

  22. Vescovi P, Merigo E, Conti S et al (2010) Bactericidal effect on Nd:YAG laser on Staphylococcus aureus and Actinomyces israelii: preliminary results. Lasers Med Sci 25:S42

    Google Scholar 

  23. Vescovi P, Merigo E, Manfredi M, Meleti M, Fornaini M, Bonanini M, Rocca JP, Nammour S (2008) Nd:YAG laser biostimulation in the treatment of bisphosphonate-associated necrosis of the jaw: clinical experience in 28 cases. Photomed Laser Surg 26:37–46

    PubMed  CrossRef  Google Scholar 

  24. Scoletta M, Arduino PG, Reggio L, Delmasso P, Mozzati M (2010) Effect of low-level laser irradiation on bisphosphonate-induced osteonecrosis of the jaws: preliminary results of prospective study. Photomed Laser Surg 110:46–53

    Google Scholar 

  25. Romeo U, Galanakis A, Marias C et al (2011) Observation of pain control in patients with bisphosphonate-induced osteonecrosis using low level laser therapy: preliminary results. Photomed Laser Surg (Epub ahead of print)

    Google Scholar 

  26. Vescovi P, Merigo E, Meleti M, Manfredi M (2008) Early surgical approach preferable to medical therapy for bisphosphonate-related osteonecrosis of the jaw. J Oral Maxillofac Surg 66:931–933

    CrossRef  Google Scholar 

  27. Wutzl A, Biedermann E, Wanschitz F et al (2008) Treatment results of bisphosphonate-related osteonecrosis of the jaws. Head Neck 30:1224–1230

    PubMed  CrossRef  Google Scholar 

  28. Markose G, Mackenzie FR, Currie WJ, Hislop WS (2009) Bisphosphonate osteonecrosis: a protocol for surgical management. Br J Oral Maxillofac Surg 47:294–297

    PubMed  CrossRef  Google Scholar 

  29. Van den Wyngaert T, Claeys T, Huizing MT, Vermorken JB, Fossion E (2009) Initial experience with conservative treatment in cancer patients with osteonecrosis of the jaws (ONJ) and predictor outcomes. Ann Oncol 2:331–336

    Google Scholar 

  30. Stockmann P, Vairaktaris E, Wehrhan F et al (2010) Osteotomy and primary wound closure in bisphosphonate-associated osteonecrosis of the jaw: a prospective clinical study with 12 months follow-up. Support Care Cancer 18:449–460

    PubMed  CrossRef  Google Scholar 

  31. Vescovi P, Romeo U, Merigo E et al (2011) Use of laser therapy in the treatment of jaw bone diseases. Dent Cadmos 79:133–148

    CrossRef  Google Scholar 

  32. Pourzarandian A, Watanabe H, Aoki A et al (2004) Histological and TEM examination of early stages of bone healing after Er:YAG laser irradiation. Photomed Laser Surg 22:343–350

    CrossRef  Google Scholar 

  33. de Mello ED, Pagnoncelli RM, Munin E et al (2008) Comparative histological analysis of bone healing of standardized bone defects performed with the Er:YAG laser and steel burs. Lasers Med Sci 23:253–260

    PubMed  CrossRef  Google Scholar 

  34. Romeo U, Del Vecchio A, Palaia G, Tenore G, Visca P, Maggiore C (2009) Bone damage induced by different cutting instruments. An in vitro study. Braz Dent J 20:162–168

    PubMed  CrossRef  Google Scholar 

  35. Vescovi P, Merigo E, Manfredi M et al (2009) Surgical treatment of maxillary osteonecrosis due to bisphosphonates using an Er:YAG (2940 nm) laser. Discussion of 17 clinical cases. Rev Belge Med Dent 64:87–95

    Google Scholar 

  36. Vescovi P, Manfredi M, Merigo E et al (2010) Surgical approach with Er:YAG laser on Osteonecrosis of the Jaws (ONJ) in patients under Bisphosphonate Therapy (BPT). Lasers Med Sci 25:101–113

    PubMed  CrossRef  Google Scholar 

  37. Merigo E, Vescovi P, Manfredi M et al (2010) Surgical Er:YAG laser assisted treatment of BRONJ (Bisphosphonate-Related Osteonecrosis of the Jaws). Lasers Med Sci 25:S43

    Google Scholar 

  38. Angiero F, Sannino C, Borloni R, Crippa R, Benedicenti S, Romanos GE (2009) Osteonecrosis of the jaws caused by bisphosphonates: evaluation of a new therapeutic approach using the Er:YAG laser. Laser Med Sci 24:849–856

    CrossRef  Google Scholar 

  39. Stubinger S, Dissmann JP, Pinho NC, Saldamli B, Seitz O, Sader R (2009) A preliminary report about treatment of bisphosphonate related osteonecrosis of the jaw with Er:YAG laser ablation. Lasers Surg Med 41:28–30

    CrossRef  Google Scholar 

  40. Vescovi P, Campisi G, Fusco V et al (2011) Bisphosphonate-Related Osteonecrosis of the Jaws (BRONJ) not associated to invasive dental procedures: a retrospective analysis of 567 cases in an Italian multicenter study. Oral Oncol 47:191–194

    PubMed  CrossRef  CAS  Google Scholar 

  41. Mavrokokki T, Cheng A, Stein B, Gos A (2007) Nature and frequency of bisphosphonate-associated osteonecrosis in Australia. J Oral Maxillofac Surg 65:415–423

    PubMed  CrossRef  Google Scholar 

  42. Malden N, Beltes C, Lopes V (2009) Dental extractions and bisphosphonates: the assessment, consent and management, a proposed algorithm. Br Dent J 206:93–98

    PubMed  CrossRef  CAS  Google Scholar 

  43. Vescovi P, Fornaini C, Merigo E et al (2009) Use of Nd:YAG laser biostimulation for dental extractions scheme in patients under bisphosphonates therapy. Lasers Med Sci 24:S44

    Google Scholar 

  44. Vescovi P, Nammour S (2010) Bisphosphonate-related osteonecrosis of the jaw (BRONJ) therapy. A critical review. Minerva Stomatol 59:181–213

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Vescovi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Milan

About this chapter

Cite this chapter

Vescovi, P. (2012). Conservative Treatment: LASER (Biostimulation and Minimally Invasive Surgical Treatment). In: De Ponte, F. (eds) Bisphosphonates and Osteonecrosis of the Jaw: A Multidisciplinary Approach. Springer, Milano. https://doi.org/10.1007/978-88-470-2083-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2083-2_12

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2082-5

  • Online ISBN: 978-88-470-2083-2

  • eBook Packages: MedicineMedicine (R0)