Advertisement

Biomarkers of Cocoa Consumption

  • Nasiruddin Khan
  • Nathalie M. Nicod

Abstract

Cocoa is a rich source of polyphenols; indeed cocoa beans contain approximately 6–8% polyphenols by dry weight [1].

Keywords

Nicotinic Acid Ferulic Acid Vanillic Acid Total Polyphenolic Content Cocoa Bean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Grassi D, Desideri G, Necozione S et al (2008) Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J Nutr 138(9):1671–1676PubMedGoogle Scholar
  2. 2.
    Rusconi M, Conti A (2010) Theobroma cacao L., the food of the gods: A scientific approach beyond myths and claims. Pharmacol Res 61(1):5–13PubMedCrossRefGoogle Scholar
  3. 3.
    Gu L, House SE, Wu X et al (2006) Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J Agric Food Chem 54(11):4057–4061PubMedCrossRefGoogle Scholar
  4. 4.
    Urpi-Sarda M, Monagas M, Khan N et al (2009) Epicatechin, procyanidins, and phenolic microbial metabolites after cocoa intake in humans and rats. Anal Bioanal Chem 394(6):1545–1556PubMedCrossRefGoogle Scholar
  5. 5.
    Holt RR, Lazarus SA, Sullards MC et al (2002) Procyanidin dimer b2 [epicatechin-(4beta-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am J Clin Nutr 76(4):798–804PubMedGoogle Scholar
  6. 6.
    Appeldoorn M et al (2009) Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-gamma-valerolactone as the major metabolites. J Agric Food Chem 57(3):1084–1092PubMedCrossRefGoogle Scholar
  7. 7.
    Rios LY, Gonthier MP, Remesy C et al (2003) Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects. Am J Clin Nutr 77(4):912–918PubMedGoogle Scholar
  8. 8.
    Urpi-Sarda M, Monagas M, Khan N et al (2009) Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216(43):7258–7267PubMedCrossRefGoogle Scholar
  9. 9.
    Mennen LI, Sapinho D, Ito H et al (2006) Urinary flavonoids and phenolic acids as biomarkers of intake for polyphenol-rich foods. Br J Nutr 96(1):191–198PubMedCrossRefGoogle Scholar
  10. 10.
    Spencer JP, Abd El Mohsen MM, Minihane AM et al (2008) Biomarkers of the intake of dietary polyphenols: Strengths, limitations and application in nutrition research. Br J Nutr 99(1):12–22PubMedCrossRefGoogle Scholar
  11. 11.
    Llorach R (2009) An LC-MS-based metabolomics approach for exploring urinary metabolome modifications after cocoa consumption. J Proteome Res 8:5060–5068PubMedCrossRefGoogle Scholar
  12. 12.
    Rodopoulos N, Hojvall L, Norman A (1996) Elimination of theobromine metabolites in healthy adults. Scand J Clin Lab Invest 56(4):373–383PubMedCrossRefGoogle Scholar
  13. 13.
    Tomas-Barberan FA, Cienfuegos-Jovellanos E, Marin A et al (2007) A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem 55(10):3926–3935PubMedCrossRefGoogle Scholar
  14. 14.
    Fardet A, Llorach R, Martin JF et al (2008) A liquid chromatography-quadrupole time-offlight (LC-qTOF)-based metabolomic approach reveals new metabolic effects of catechin in rats fed high-fat diets. J Proteome Res 7(6):2388–2398PubMedCrossRefGoogle Scholar
  15. 15.
    Willeke U HV, Meise M, Neuhann H et al (1979) Mutually exclusive occurrence and metabolism of trigonelline and nicotinic acid arabinoside in plant cell cultures. Phytochemistry 18:105–110CrossRefGoogle Scholar
  16. 16.
    Clifford MN (1985) Chemical and physical aspects of green coffee and coffee products. In: Clifford MN, Willson KC (eds) Coffee: Botany, biochemistry and production of beans and beverage. Croom-Helm, LondonGoogle Scholar
  17. 17.
    Mazzafera P (1991) Trigonelline in coffee. Phytochemistry 30:2309–2310CrossRefGoogle Scholar
  18. 18.
    Holcenberg JS, Stadtman ER (1969) Nicotinic acid metabolism. 3. Purification and properties of a nicotinic acid hydroxylase. J Biol Chem 244(5):1194–1203PubMedGoogle Scholar
  19. 19.
    Zheng XQ, Nagai C, Ashihara H (2004) Pyridine nucleotide cycle and trigonelline (n-methylnicotinic acid) synthesis in developing leaves and fruits of coffea arabica. Physiol Plant 122:404–411CrossRefGoogle Scholar
  20. 20.
    Lang R, Yagar EF, Eggers R et al (2008) Quantitative investigation of trigonelline, nicotinic acid, and nicotinamide in foods, urine, and plasma by means of LC-MS/MS and stable isotope dilution analysis. J Agric Food Chem 56(23):11114–11121PubMedCrossRefGoogle Scholar
  21. 21.
    Lang R, Wahl A, Skurk T et al (2010) Development of a hydrophilic liquid interaction chromatography-high-performance liquid chromatography-tandem mass spectrometry based stable isotope dilution analysis and pharmacokinetic studies on bioactive pyridines in human plasma and urine after coffee consumption. Anal Chem 82(4):1486–1497PubMedCrossRefGoogle Scholar
  22. 22.
    Ito H, Gonthier MP, Manach C et al (2005) Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. Br J Nutr 94(4):500–509PubMedCrossRefGoogle Scholar
  23. 23.
    Clifford MN (1999) Chlorogenic acids and other cinnamates nature, occurrence and dietary burden. J Sci Food Agric 79(3):362–372CrossRefGoogle Scholar
  24. 24.
    Zhao Z, Moghadasian MH (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem 109(4):691–702CrossRefGoogle Scholar
  25. 25.
    Chesson A, Provan GJ, Russell WR et al (1999) Hydroxycinnamic acids in the digestive tract of livestock and humans. J Sci Food Agric 79(3):373–378CrossRefGoogle Scholar
  26. 26.
    Konishi Y, Zhao Z, Shimizu M (2006) Phenolic acids are absorbed from the rat stomach with different absorption rates. J Agric Food Chem 54(20):7539–7543PubMedCrossRefGoogle Scholar
  27. 27.
    Yang C, Tian Y, Zhang Z et al (2007) High-performance liquid chromatography-electrospray ionization mass spectrometry determination of sodium ferulate in human plasma. J Pharm Biomed Anal 43(3):945–950PubMedCrossRefGoogle Scholar
  28. 28.
    Greer F, Hudson R, Ross R et al (2001) Caffeine ingestion decreases glucose disposal during a hyperinsulinemic-euglycemic clamp in sedentary humans. Diabetes 50(10):2349–2354PubMedCrossRefGoogle Scholar
  29. 29.
    Tarka SM, Hurst W J (eds) (1998) Introduction to the chemistry, isolation, and the biosynthesis of methylxanthines. In: Spiller G (ed), Caffeine. CRC Press LLC, Boca Raton, FL, pp 1–11Google Scholar
  30. 30.
    Apgar JL, Tarka SM (eds) (1999) Methylxanthines. In: Knight I (ed) Chocolate and cocoa: Health and nutrition. Blackwell Science, Oxford, England, pp 153–173Google Scholar
  31. 31.
    Ptolemy AS, Tzioumis E, Thomke A et al (2010) Quantification of theobromine and caffeine in saliva, plasma and urine via liquid chromatography-tandem mass spectrometry: A single analytical protocol applicable to cocoa intervention studies. J Chromatogr B Analyt Technol Biomed Life Sci 878(3–4):409–416PubMedGoogle Scholar
  32. 32.
    Ramli N, Rahman SA, Hassan O et al (2000) Caffeine and theobromine levels in chocolate couverture and coating products. Mal J Nutr 6:55–63Google Scholar
  33. 33.
    World Health Organization, International Agency for Research on Cancer (1991) Theobromine. Coffee, tea, mate, methylxanthines and methylglyoxal. Lyon, pp 421–441Google Scholar
  34. 34.
    Alemanno L, Ramos T, Gargadenec A et al (2003) Localization and identification of phenolic compounds in Theobroma cacao L. Somatic embryogenesis. Ann Bot 92(4):613–623PubMedCrossRefGoogle Scholar
  35. 35.
    Baba S, Osakabe N, Kato Y et al (2007) Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans. Am J Clin Nutr 85(3):709–717PubMedGoogle Scholar
  36. 36.
    Schwan RF, Wheals AE (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr 44(4):205–221PubMedCrossRefGoogle Scholar
  37. 37.
    Blank I, Sen A, Grosch W (1992) Potent odorants of the roasted powder and brew of arabica coffee. Z Lebensm Unters Forsch 195:239–245CrossRefGoogle Scholar
  38. 38.
    Bonvehí JS (2005) Investigation of aromatic compounds in roasted cocoa powder. Eur Food Res Technol 221:19–29CrossRefGoogle Scholar

Suggested Readings

  1. Medina-Remon A et al (2009) Rapid Folin-Ciocalteu method using microtiter 96-well plate cartridges for solid phase extraction to assess urinary total phenolic compounds, as a biomarker of total polyphenols intake. Anal Chim Acta 634(1):54–60PubMedCrossRefGoogle Scholar
  2. Perez-Jimenez J et al (2010) Urinary metabolites as biomarkers of polyphenol intake in humans: a systematic review. Am J Clin Nutr 92(4):801–809PubMedCrossRefGoogle Scholar
  3. Camu N, Winter TD, Addo SK et al (2008) Fermentation of cocoa beans: influence of microbial activities and polyphenol concentrations on the flavour of chocolate. J Sci Food Agric 88:2288–2297CrossRefGoogle Scholar
  4. Loke WM et al (2009) A metabolite profiling approach to identify biomarkers of flavonoid intake in humans. J Nutr 139(12):2309–2314PubMedCrossRefGoogle Scholar
  5. Hug B et al (2006) Development of a gas-liquid chromatographic method for the analysis of fatty acid tryptamides in cocoa products. J Agric Food Chem 54(9):3199–3203PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Fundación Imdea Alimentación, Parque Científico de MadridCampus Universitario de CantoblancoMadridSpain

Personalised recommendations