Advertisement

Serum α-Chemokine CXCL10 and β-Chemokine CCL2 Levels in HCV-Positive Cryoglobulinemia

  • Alessandro Antonelli
  • Clodoveo Ferri
  • Silvia Martina Ferrari
  • Michele Colaci
  • Ilaria Ruffilli
  • Caterina Mancusi
  • Ele Ferrannini
  • Poupak Fallahi
Chapter

Abstract

Chemokines are a group of low-molecular-weight peptides that induce the recruitment of leukocytes to sites of inflammation. Among the four major families, CXC chemokines, with CXCL10 as the prototype, display a strong chemo-attractant activity for Th1 lymphocytes and is a reliable marker of Th1-immune mediated diseases. Chemokines from the CC family, with CCL2 as the prototype, are chemo-attractant to Th2 lymphocytes. Our studies demonstrate significantly high serum levels of CXCL10 in patients with MC+HCV with respect to HCV-infected patients without mixed cryoglobulinemia, in particular in the presence of active vasculitis, autoimmune thyroiditis or diabetes. Serum levels of CCL2 in MC+HCV were higher than in controls, but similar to those in HCV-infected patients without mixed cryoglobulinemia. The high levels of CXCL10 in MC+HCV suggest that a Th1 immune process is the immunological base of the association between MC+HCV and the appearance of the above-mentioned disorders. Future studies in larger patient series will be needed to evaluate the relevance of serum CXCL10 as clinico-prognostic marker of MC+HCV, as well as its usefulness in the therapeutic approach to these patients.

Keywords

Autoimmune Thyroiditis Mixed Cryoglobulinemia CXCL10 Level Active Vasculitis Large Patient Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127PubMedCrossRefGoogle Scholar
  2. 2.
    Arenberg D (2006) Chemokines in the biology of lung cancer. J Thorac Oncol 1:287–288PubMedCrossRefGoogle Scholar
  3. 3.
    Strieter RM, Gomperts BN, Keane MP (2007) The role of CXC chemokines in pulmonary fibrosis. J Clin Invest 117:549–556PubMedCrossRefGoogle Scholar
  4. 4.
    Horuk R (2007) Chemokines. ScientificWorldJournal 7:224–232PubMedCrossRefGoogle Scholar
  5. 5.
    Liu X, Das AM, Seideman J et al (2007) The CC chemokine ligand 2 (CCL2) mediates fibroblast survival through IL-6. Am J Respir Cell Mol Biol 37:121–128PubMedCrossRefGoogle Scholar
  6. 6.
    Karpus WJ, Lukacs NW, Kennedy KJ et al (1997) Differential CC chemokine-induced enhancement of T helper cell cytokine production. J Immunol 158:4129–4136PubMedGoogle Scholar
  7. 7.
    Narumi S, Tominaga Y, Tamaru M et al (1997) Expression of IFN-inducible protein-10 in chronic hepatitis. J Immunol 158:5536–5544PubMedGoogle Scholar
  8. 8.
    Nishioji K, Okanoue T, Itoh Y et al (2001) Increase of chemokine interferon inducible protein-10 (IP-10) in the serum of patients with autoimmune liver diseases and increase of its mRNA expression in hepatocytes. Clin Exp Immunol 123:271–279PubMedCrossRefGoogle Scholar
  9. 9.
    Bieche I, Asselah T, Laurendeau I et al (2005) Molecular profiling of early stage liver fibrosis in patients with chronic hepatitis C virus infection. Virology 332:130–144PubMedCrossRefGoogle Scholar
  10. 10.
    Apolinario A, Majano PL, Lorente R et al (2005) Gene expression profile of T-cell-specific chemokines in human hepatocyte-derived cells: evidence for a synergistic inducer effect of cytokines and hepatitis C virus proteins. J Viral Hepat 12:27–37PubMedCrossRefGoogle Scholar
  11. 11.
    Harvey CE, Post JJ, Palladinetti P et al (2003) Expression of the chemokine IP-10 (CXCL10) by hepatocytes in chronic hepatitis C virus infection correlates with histological severity and lobular inflammation. J Leukoc Biol 74:360–369PubMedCrossRefGoogle Scholar
  12. 12.
    Lagging M, Romero AI, Westin J et al (2006) IP-10 predicts viral response and therapeutic outcome in difficult-to-treat patients with HCV genotype 1 infection. Hepatology 44:1617–1625PubMedCrossRefGoogle Scholar
  13. 13.
    Romero AI, Lagging M, Westin J et al (2006) Interferon (IFN)-gamma-inducible protein-10: association with histological results, viral kinetics, and outcome during treatment with pegylated IFN-alpha 2a and ribavirin for chronic hepatitis C virus infection. J Infect Dis 194:895–903PubMedCrossRefGoogle Scholar
  14. 14.
    Diago M, Castellano G, Garcia-Samaniego J et al (2006) Association of pretreatment serum interferon gamma inducible protein 10 levels with sustained virological response to peginterferon plus ribavirin therapy in genotype 1 infected patients with chronic hepatitis C. Gut 55:374–379PubMedCrossRefGoogle Scholar
  15. 15.
    Butera D, Marukian S, Iwamaye AE et al (2005) Plasma chemokine levels correlate with the outcome of antiviral therapy in patients with hepatitis C. Blood 106:1175–1182PubMedCrossRefGoogle Scholar
  16. 16.
    Antonelli A, Ferri C, Fallahi P et al (2008) High values of CXCL10 serum levels in mixed cryoglobulinemia associated with hepatitis C infection. Am J Gastroenterol 103:2488–2494PubMedCrossRefGoogle Scholar
  17. 17.
    Antonelli A, Ferri C, Fallahi P et al (2009) CXCL10 and CCL2 serum levels in patients with mixed cryoglobulinaemia and hepatitis C. Dig Liver Dis 41:42–48PubMedCrossRefGoogle Scholar
  18. 18.
    Antonelli A, Ferri C, Ferrari SM et al (2010) Serum concentrations of interleukin 1beta, CXCL10, and interferon-gamma in mixed cryoglobulinemia associated with hepatitis C infection. J Rheumatol 37:91–97PubMedCrossRefGoogle Scholar
  19. 19.
    Antonelli A, Ferri C, Fallahi P et al (2004) Thyroid involvement in patients with overt HCV-related mixed cryoglobulinaemia. QJM 97:499–506PubMedCrossRefGoogle Scholar
  20. 20.
    Antonelli A, Ferri C, Ferrari SM et al (2009) Endocrine manifestations of hepatitis C virus infection. Nat Clin Pract Endocrinol Metab 5:26–34PubMedCrossRefGoogle Scholar
  21. 21.
    Antonelli A, Ferri C, Fallahi P (2009) Hepatitis C: thyroid dysfunction in patients with hepatitis C on IFN-alpha therapy. Nat Rev Gastroenterol Hepatol 6:633–6365PubMedCrossRefGoogle Scholar
  22. 22.
    Caturegli P, Hejazi M, Suzuki K et al (2000) Hypothyroidism in transgenic mice expressing IFN-gamma in the thyroid. Proc Natl Acad Sci USA 97:1719–1724PubMedCrossRefGoogle Scholar
  23. 23.
    Garcia-Lopez MA, Sancho D, Sánchez-Madrid F et al (2001) Thyrocytes from autoimmune thyroid disorders produce the chemokines IP-10 and Mig and attract CXCR3+ lymphocytes. J Clin Endocrinol Metab 86:5008–5016PubMedCrossRefGoogle Scholar
  24. 24.
    Antonelli A, Rotondi M, Fallahi P et al (2004) High levels of circulating CXCL10 are associated with chronic autoimmune thyroiditis and hypothyroidism. J Clin Endocrinol Metab 89:5496–5499PubMedCrossRefGoogle Scholar
  25. 25.
    Antonelli A, Rotondi M, Fallahi P et al (2005) Increase of interferon-γ inducible α chemokine CXCL10 but not β chemokine CCL2 serum levels in chronic autoimmune thyroiditis. Eur J Endocrinol 152:171–177PubMedCrossRefGoogle Scholar
  26. 26.
    Antonelli A, Rotondi M, Ferrari SM et al (2006) Interferon-gamma-inducible alpha-chemokine CXCL10 involvement in Graves’ ophthalmopathy: modulation by peroxisome proliferator-activated receptor-gamma agonists. J Clin Endocrinol Metab 9:614–620Google Scholar
  27. 27.
    Antonelli A, Ferri C, Fallahi P et al (2006) Thyroid disorders in chronic hepatitis C virus infection. Thyroid 16:563–572PubMedCrossRefGoogle Scholar
  28. 28.
    Antonelli A, Ferri C, Fallahi P et al (2005) Extrahepatic manifestations of hepatitis C virus: the thyroid disorders. Recenti Prog Med 96:370–381PubMedGoogle Scholar
  29. 29.
    Gowans EJ (2000) Distribution of markers of hepatitis C virus infection throughout the body. Semin Liver Dis 20:85–102PubMedCrossRefGoogle Scholar
  30. 30.
    Bartolomé J (2008) Detection of hepatitis C virus in thyroid tissue from patients with chronic HCV infection. J Med Virol 80:1588–1594PubMedCrossRefGoogle Scholar
  31. 31.
    Antonelli A, Ferri C, Fallahi P et al (2008) High values of CXCL10 serum levels in patients with hepatitis C associated mixed cryoglobulinemia in presence or absence of autoimmune thyroiditis. Cytokine 42:137–143PubMedCrossRefGoogle Scholar
  32. 32.
    Antonelli A, Ferri C, Fallahi P et al (2008) Alpha-chemokine CXCL10 and beta-chemokine CCL2 serum levels in patients with hepatitis C-associated cryoglobulinemia in the presence or absence of autoimmune thyroiditis. Metabolism 57:1270–1277PubMedCrossRefGoogle Scholar
  33. 33.
    Noto H, Raskin P (2006) Hepatitis C infection and diabetes. J Diabetes Complications 20:113–120PubMedCrossRefGoogle Scholar
  34. 34.
    Antonelli A, Ferri C, Fallahi P et al (2004) Type 2 diabetes in hepatitis C-related mixed cryoglobulinaemia patients. Rheumatology 43:238–240PubMedCrossRefGoogle Scholar
  35. 35.
    Masini M, Campani D, Boggi U et al (2005) Hepatitis C virus infection and human pancreatic beta-cell dysfunction. Diabetes Care 28:940–941PubMedCrossRefGoogle Scholar
  36. 36.
    Antonelli A, Ferri C, Fallahi P et al (2005) Hepatitis C virus infection: evidence for an association with type 2 diabetes. Diabetes Care 28:2548–2550PubMedCrossRefGoogle Scholar
  37. 37.
    Skowronski M, Zozulinska D, Juszczyk J et al (2006) Hepatitis C virus infection: evidence for an association with type 2 diabetes. Diabetes Care 29:750; author reply 751PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Alessandro Antonelli
    • 1
  • Clodoveo Ferri
    • 2
  • Silvia Martina Ferrari
    • 1
  • Michele Colaci
    • 2
  • Ilaria Ruffilli
    • 1
  • Caterina Mancusi
    • 1
  • Ele Ferrannini
    • 1
  • Poupak Fallahi
    • 1
  1. 1.Metabolism Unit, Department of Internal MedicineUniversity of Pisa School of MedicinePisaItaly
  2. 2.Rheumatology Unit, Department of Internal MedicineUniversity of Modena and Reggio Emilia, Medical SchoolModenaItaly

Personalised recommendations