Serum α-Chemokine CXCL10 and β-Chemokine CCL2 Levels in HCV-Positive Cryoglobulinemia

  • Alessandro Antonelli
  • Clodoveo Ferri
  • Silvia Martina Ferrari
  • Michele Colaci
  • Ilaria Ruffilli
  • Caterina Mancusi
  • Ele Ferrannini
  • Poupak Fallahi


Chemokines are a group of low-molecular-weight peptides that induce the recruitment of leukocytes to sites of inflammation. Among the four major families, CXC chemokines, with CXCL10 as the prototype, display a strong chemo-attractant activity for Th1 lymphocytes and is a reliable marker of Th1-immune mediated diseases. Chemokines from the CC family, with CCL2 as the prototype, are chemo-attractant to Th2 lymphocytes. Our studies demonstrate significantly high serum levels of CXCL10 in patients with MC+HCV with respect to HCV-infected patients without mixed cryoglobulinemia, in particular in the presence of active vasculitis, autoimmune thyroiditis or diabetes. Serum levels of CCL2 in MC+HCV were higher than in controls, but similar to those in HCV-infected patients without mixed cryoglobulinemia. The high levels of CXCL10 in MC+HCV suggest that a Th1 immune process is the immunological base of the association between MC+HCV and the appearance of the above-mentioned disorders. Future studies in larger patient series will be needed to evaluate the relevance of serum CXCL10 as clinico-prognostic marker of MC+HCV, as well as its usefulness in the therapeutic approach to these patients.


Autoimmune Thyroiditis Mixed Cryoglobulinemia CXCL10 Level Active Vasculitis Large Patient Series 


  1. 1.
    Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127PubMedCrossRefGoogle Scholar
  2. 2.
    Arenberg D (2006) Chemokines in the biology of lung cancer. J Thorac Oncol 1:287–288PubMedCrossRefGoogle Scholar
  3. 3.
    Strieter RM, Gomperts BN, Keane MP (2007) The role of CXC chemokines in pulmonary fibrosis. J Clin Invest 117:549–556PubMedCrossRefGoogle Scholar
  4. 4.
    Horuk R (2007) Chemokines. ScientificWorldJournal 7:224–232PubMedCrossRefGoogle Scholar
  5. 5.
    Liu X, Das AM, Seideman J et al (2007) The CC chemokine ligand 2 (CCL2) mediates fibroblast survival through IL-6. Am J Respir Cell Mol Biol 37:121–128PubMedCrossRefGoogle Scholar
  6. 6.
    Karpus WJ, Lukacs NW, Kennedy KJ et al (1997) Differential CC chemokine-induced enhancement of T helper cell cytokine production. J Immunol 158:4129–4136PubMedGoogle Scholar
  7. 7.
    Narumi S, Tominaga Y, Tamaru M et al (1997) Expression of IFN-inducible protein-10 in chronic hepatitis. J Immunol 158:5536–5544PubMedGoogle Scholar
  8. 8.
    Nishioji K, Okanoue T, Itoh Y et al (2001) Increase of chemokine interferon inducible protein-10 (IP-10) in the serum of patients with autoimmune liver diseases and increase of its mRNA expression in hepatocytes. Clin Exp Immunol 123:271–279PubMedCrossRefGoogle Scholar
  9. 9.
    Bieche I, Asselah T, Laurendeau I et al (2005) Molecular profiling of early stage liver fibrosis in patients with chronic hepatitis C virus infection. Virology 332:130–144PubMedCrossRefGoogle Scholar
  10. 10.
    Apolinario A, Majano PL, Lorente R et al (2005) Gene expression profile of T-cell-specific chemokines in human hepatocyte-derived cells: evidence for a synergistic inducer effect of cytokines and hepatitis C virus proteins. J Viral Hepat 12:27–37PubMedCrossRefGoogle Scholar
  11. 11.
    Harvey CE, Post JJ, Palladinetti P et al (2003) Expression of the chemokine IP-10 (CXCL10) by hepatocytes in chronic hepatitis C virus infection correlates with histological severity and lobular inflammation. J Leukoc Biol 74:360–369PubMedCrossRefGoogle Scholar
  12. 12.
    Lagging M, Romero AI, Westin J et al (2006) IP-10 predicts viral response and therapeutic outcome in difficult-to-treat patients with HCV genotype 1 infection. Hepatology 44:1617–1625PubMedCrossRefGoogle Scholar
  13. 13.
    Romero AI, Lagging M, Westin J et al (2006) Interferon (IFN)-gamma-inducible protein-10: association with histological results, viral kinetics, and outcome during treatment with pegylated IFN-alpha 2a and ribavirin for chronic hepatitis C virus infection. J Infect Dis 194:895–903PubMedCrossRefGoogle Scholar
  14. 14.
    Diago M, Castellano G, Garcia-Samaniego J et al (2006) Association of pretreatment serum interferon gamma inducible protein 10 levels with sustained virological response to peginterferon plus ribavirin therapy in genotype 1 infected patients with chronic hepatitis C. Gut 55:374–379PubMedCrossRefGoogle Scholar
  15. 15.
    Butera D, Marukian S, Iwamaye AE et al (2005) Plasma chemokine levels correlate with the outcome of antiviral therapy in patients with hepatitis C. Blood 106:1175–1182PubMedCrossRefGoogle Scholar
  16. 16.
    Antonelli A, Ferri C, Fallahi P et al (2008) High values of CXCL10 serum levels in mixed cryoglobulinemia associated with hepatitis C infection. Am J Gastroenterol 103:2488–2494PubMedCrossRefGoogle Scholar
  17. 17.
    Antonelli A, Ferri C, Fallahi P et al (2009) CXCL10 and CCL2 serum levels in patients with mixed cryoglobulinaemia and hepatitis C. Dig Liver Dis 41:42–48PubMedCrossRefGoogle Scholar
  18. 18.
    Antonelli A, Ferri C, Ferrari SM et al (2010) Serum concentrations of interleukin 1beta, CXCL10, and interferon-gamma in mixed cryoglobulinemia associated with hepatitis C infection. J Rheumatol 37:91–97PubMedCrossRefGoogle Scholar
  19. 19.
    Antonelli A, Ferri C, Fallahi P et al (2004) Thyroid involvement in patients with overt HCV-related mixed cryoglobulinaemia. QJM 97:499–506PubMedCrossRefGoogle Scholar
  20. 20.
    Antonelli A, Ferri C, Ferrari SM et al (2009) Endocrine manifestations of hepatitis C virus infection. Nat Clin Pract Endocrinol Metab 5:26–34PubMedCrossRefGoogle Scholar
  21. 21.
    Antonelli A, Ferri C, Fallahi P (2009) Hepatitis C: thyroid dysfunction in patients with hepatitis C on IFN-alpha therapy. Nat Rev Gastroenterol Hepatol 6:633–6365PubMedCrossRefGoogle Scholar
  22. 22.
    Caturegli P, Hejazi M, Suzuki K et al (2000) Hypothyroidism in transgenic mice expressing IFN-gamma in the thyroid. Proc Natl Acad Sci USA 97:1719–1724PubMedCrossRefGoogle Scholar
  23. 23.
    Garcia-Lopez MA, Sancho D, Sánchez-Madrid F et al (2001) Thyrocytes from autoimmune thyroid disorders produce the chemokines IP-10 and Mig and attract CXCR3+ lymphocytes. J Clin Endocrinol Metab 86:5008–5016PubMedCrossRefGoogle Scholar
  24. 24.
    Antonelli A, Rotondi M, Fallahi P et al (2004) High levels of circulating CXCL10 are associated with chronic autoimmune thyroiditis and hypothyroidism. J Clin Endocrinol Metab 89:5496–5499PubMedCrossRefGoogle Scholar
  25. 25.
    Antonelli A, Rotondi M, Fallahi P et al (2005) Increase of interferon-γ inducible α chemokine CXCL10 but not β chemokine CCL2 serum levels in chronic autoimmune thyroiditis. Eur J Endocrinol 152:171–177PubMedCrossRefGoogle Scholar
  26. 26.
    Antonelli A, Rotondi M, Ferrari SM et al (2006) Interferon-gamma-inducible alpha-chemokine CXCL10 involvement in Graves’ ophthalmopathy: modulation by peroxisome proliferator-activated receptor-gamma agonists. J Clin Endocrinol Metab 9:614–620Google Scholar
  27. 27.
    Antonelli A, Ferri C, Fallahi P et al (2006) Thyroid disorders in chronic hepatitis C virus infection. Thyroid 16:563–572PubMedCrossRefGoogle Scholar
  28. 28.
    Antonelli A, Ferri C, Fallahi P et al (2005) Extrahepatic manifestations of hepatitis C virus: the thyroid disorders. Recenti Prog Med 96:370–381PubMedGoogle Scholar
  29. 29.
    Gowans EJ (2000) Distribution of markers of hepatitis C virus infection throughout the body. Semin Liver Dis 20:85–102PubMedCrossRefGoogle Scholar
  30. 30.
    Bartolomé J (2008) Detection of hepatitis C virus in thyroid tissue from patients with chronic HCV infection. J Med Virol 80:1588–1594PubMedCrossRefGoogle Scholar
  31. 31.
    Antonelli A, Ferri C, Fallahi P et al (2008) High values of CXCL10 serum levels in patients with hepatitis C associated mixed cryoglobulinemia in presence or absence of autoimmune thyroiditis. Cytokine 42:137–143PubMedCrossRefGoogle Scholar
  32. 32.
    Antonelli A, Ferri C, Fallahi P et al (2008) Alpha-chemokine CXCL10 and beta-chemokine CCL2 serum levels in patients with hepatitis C-associated cryoglobulinemia in the presence or absence of autoimmune thyroiditis. Metabolism 57:1270–1277PubMedCrossRefGoogle Scholar
  33. 33.
    Noto H, Raskin P (2006) Hepatitis C infection and diabetes. J Diabetes Complications 20:113–120PubMedCrossRefGoogle Scholar
  34. 34.
    Antonelli A, Ferri C, Fallahi P et al (2004) Type 2 diabetes in hepatitis C-related mixed cryoglobulinaemia patients. Rheumatology 43:238–240PubMedCrossRefGoogle Scholar
  35. 35.
    Masini M, Campani D, Boggi U et al (2005) Hepatitis C virus infection and human pancreatic beta-cell dysfunction. Diabetes Care 28:940–941PubMedCrossRefGoogle Scholar
  36. 36.
    Antonelli A, Ferri C, Fallahi P et al (2005) Hepatitis C virus infection: evidence for an association with type 2 diabetes. Diabetes Care 28:2548–2550PubMedCrossRefGoogle Scholar
  37. 37.
    Skowronski M, Zozulinska D, Juszczyk J et al (2006) Hepatitis C virus infection: evidence for an association with type 2 diabetes. Diabetes Care 29:750; author reply 751PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Alessandro Antonelli
    • 1
  • Clodoveo Ferri
    • 2
  • Silvia Martina Ferrari
    • 1
  • Michele Colaci
    • 2
  • Ilaria Ruffilli
    • 1
  • Caterina Mancusi
    • 1
  • Ele Ferrannini
    • 1
  • Poupak Fallahi
    • 1
  1. 1.Metabolism Unit, Department of Internal MedicineUniversity of Pisa School of MedicinePisaItaly
  2. 2.Rheumatology Unit, Department of Internal MedicineUniversity of Modena and Reggio Emilia, Medical SchoolModenaItaly

Personalised recommendations