Using Many-Body Entanglement for Coordinated Action in Game Theory Problems

  • Sudhakar Yarlagadda
Part of the New Economic Windows book series (NEW)


We use many-body entangled states to solve problems, that need coordinated action, better than classical approaches. The entangled state employed is the ground state of an integer quantum Hall state at filling factor 1. Our entangled state allows N players to make mutually exclusive choices from a menu of N choices. We show that our entangled state provides the best solution for a set of classical problems whose classical solutions are not ideal.


Entangle State Quantum Entanglement Coordinate Action Lower Landau Level Quantum Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landsburg, S.E.: Quantum Game Theory. Notices of the AMS 51, 394–399 (2004)Google Scholar
  2. 2.
    Bell, J.S.: On the Einstein Podolsky Rosen Paradox. Physics 1, 195–200 (1964)Google Scholar
  3. 3.
    Tittel, W., Brendel, J., Gisin, B., Herzog, T., Zbinden, H., and Gisin, N., Experimental demonstration of quantum correlations over more than 10 km. Phys. Rev. A 57, 3229–3232 (1998)CrossRefGoogle Scholar
  4. Tittel, W., Brendel, J., Zbinden, H., and Gisin, N.: Violation of Bell Inequalities by Photons More Than 10 km Apart. Phys. Rev. Lett. 81, 3563–3566 (1998)CrossRefGoogle Scholar
  5. 4.
    Eisert, J., Wilkens, M., and Lewenstein, M.: Quantum Games and Quantum Strategies. Phys. Rev. Lett. 83, 3077–3080 (1999)CrossRefGoogle Scholar
  6. 5.
    Marinatto, L., and Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000)CrossRefGoogle Scholar
  7. 6.
    Chakrabarti, A.S., Chakrabarti, B.K., Chatterjee, A., and Mitra, M.: The Kolkata Paise Restaurant Problem and Resource Utilization. Physica A (2009) 388, 2420-2426Google Scholar
  8. 7.
    Challet, D., Marsili, M., and Zhang, Y.-C.: Minority Games: Interacting Agents in Financial Markets. Oxford Univ. Press., Oxford (2005)Google Scholar
  9. 8.
    S. Yarlagadda, to be publishedGoogle Scholar
  10. 9.
    For a realization of entangled qudits each with 6 states see O’Sullivan-Hale, M.N., Khan, I.A., Boyd, R.W., and Howell, J.C.: Pixel Entanglement: Experimental Realization of Optically Entangled d=3 and d=6 Qudits. Phys. Rev. Lett. (2005) doi: 10.1103/Phys. Rev. Lett. 94.220501Google Scholar
  11. 10.
    Shi, Y.: Quantum entanglement of identical particles. Phys. Rev. A (2003) doi: 10.1103/Phys-RevA.67.024301Google Scholar
  12. 11.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Boston (1995)Google Scholar

Copyright information

© Springer-Verlag Italia 2010

Authors and Affiliations

  • Sudhakar Yarlagadda
    • 1
  1. 1.CAMCSSaha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations