Economic Applications of Quantum Information Processing

  • Tad Hogg
  • David A. Fattal
  • Kay-Yut Chen
  • Saikat Guha
Conference paper
Part of the New Economic Windows book series (NEW)


We describe several potential economic applications for quantum information technology. These applications rely on the information aspects of quantum computing rather than computational advantages. Thus these economic applications are viable with just a few qubits, so could be useful early benefits of the technology. This contrasts with applications, such as factoring, that exploit the computational advantages of quantum computing. We illustrate this possibility in the context of auctions.


Quantum Information Entangle State Pure State Quantum Information Processing Economic Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Eisert and M. Wilkens, J. Modern Optics 47, 2543 (2000)Google Scholar
  2. 2.
    P. W. Shor, in Proc. of the 35th Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE Press, Los Alamitos, CA, 1994), pp. 124–134CrossRefGoogle Scholar
  3. 3.
    L. K. Grover, Physical Review Letters 79, 325 (1997)CrossRefGoogle Scholar
  4. 4.
    C. H. Bennet and G. Brassard, Quantum Cryptography: Public key distribution and coin tossing, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, p. 175 (1984)Google Scholar
  5. 5.
    S. Lloyd, Science 319, 1209 (2008)CrossRefGoogle Scholar
  6. 6.
    C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Physical Review Letters 70, 1895 (1993)CrossRefGoogle Scholar
  7. 7.
    G. Taubes, Science 274, 504 (1996)CrossRefGoogle Scholar
  8. 8.
    P. Klemperer, Auctions: Theory and Practice, The Toulouse Lectures in Economics (Princeton Univ. Press, Princeton, NJ, 2006)Google Scholar
  9. 9.
    D. J. Griffiths, Introduction to Quantum Mechanics, Prentice Hall; United States edition (1994). ISBN 0-13-124405-1Google Scholar
  10. 10.
    J. J. Sakurai, Modern Quantum Mechanics, Addison Wesley; 2nd edition (1993). ISBN 0-20-153929-2Google Scholar
  11. 11.
    T. Hogg, P. Harsha, and K.-Y. Chen, Intl. J. of Quantum Information 5, 751 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Guha, T. Hogg, D. Fattal, T. Spiller, and R. G. Beausoleil, International Journal of Quantum Information 6 (2008)Google Scholar
  13. 13.
    M. Naor, B. Pinkas, and R. Sumner, in Proc. of the ACM Conference on Electronic Commerce (EC99) (ACM Press, NY, 1999), pp. 129–139CrossRefGoogle Scholar
  14. 14.
    P. Cramton, Y. Shoham, and R. Steinberg, eds., Combinatorial Auctions (MIT Press, 2006)Google Scholar
  15. 15.
    M. Rabin, Tech. Menlo, TR-81, Aiken Comp. Lab., Harvard University (1981)Google Scholar
  16. 16.
    O. Goldreich, S. Micali, and A. Wigderson, in STOC’ 87: Proc. of the nineteenth annual ACM conference on theory of computing (ACM Press, New York, NY, USA, 1987), pp. 218–229CrossRefGoogle Scholar
  17. 17.
    D. B. Keim and K. A. Kavajecz, Tech. Rep. number 324240, SSRN eLibrary (2002)Google Scholar
  18. 18.
    D. Fattal, A. Chefles, M. Fiorentino, and R. G. Beausoleil, submitted to Nature, (2008)Google Scholar
  19. 19.
    T. Hogg and L. Zhang, Intl. J. of Quantum Information 7 (2009)Google Scholar
  20. 20.
    V. Giovannetti, S. Lloyd, and L. Macconne, ArXiv:quant-ph/0809.1934, (2008)Google Scholar
  21. 21.
    J. Eisert, M. Wilkens, and M. Lewenstein, Physical Review Letters 83, 3077 (1999)CrossRefGoogle Scholar
  22. 22.
    J. Du et al., Physics Letters A 302, 229 (2002a)CrossRefGoogle Scholar
  23. 23.
    J. Du et al., Physical Review Letters 88, 137902 (2002b)CrossRefGoogle Scholar
  24. 24.
    B. A. Huberman and T. Hogg, Quantum Information Processing 2, 421 (2003), preprint quant-ph/0306112CrossRefGoogle Scholar
  25. 25.
    P. L. Mura, preprint quant-ph/0309033 (2003)Google Scholar
  26. 26.
    A. P. Flitney and A. D. Greentree, Physics Letters A 362, 132 (2007)CrossRefGoogle Scholar
  27. 27.
    K.-Y. Chen, T. Hogg, and R. Beausoleil, Quantum Information Processing 1, 449 (2002), preprint quant-ph/0301013CrossRefGoogle Scholar
  28. 28.
    K.-Y. Chen and T. Hogg, Quantum Information Processing 5, 43 (2006)CrossRefGoogle Scholar
  29. 29.
    J. Preskill, Nature 402, 357 (1999)CrossRefGoogle Scholar
  30. 30.
    S. Lloyd, M. S. Shahriar, and P. R. Hemmer, Tech. Rep., MIT (2004)Google Scholar
  31. 31.
    D. Castelvecchi, Science News 174, 24 (2008)CrossRefGoogle Scholar
  32. 32.
    H. J. Kimble, Nature 453, 1023 (2008)CrossRefGoogle Scholar
  33. 33.
    K.-Y. Chen and T. Hogg, Quantum Information Processing 7, 139 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2010

Authors and Affiliations

  • Tad Hogg
    • 1
  • David A. Fattal
    • 1
  • Kay-Yut Chen
    • 1
  • Saikat Guha
    • 2
  1. 1.Hewlett Packard LaboratoriesPalo AltoUSA
  2. 2.Disruptive Information Processing TechnologiesBBN TechnologiesCambridgeUSA

Personalised recommendations