Skip to main content

Cardiac Thyroid-Hormone Deiodinative Pathways in Ventricular Hypertrophy and Heart Failure

  • Chapter
Thyroid and Heart Failure

Abstract

Many of the cardiac genes that are involved in contractile dysfunction following pathological ventricular remodeling are transcriptionally regulated by thyroid hormone (TH). The phenotype of the pathologically hypertrophied cardiomyocyte suggests that reduced TH signaling contributes to its development. Increased expression of the TH-degrading enzyme deiodinase type 3 (D3) in cardiomyocytes of hypertrophic left or right ventricles has recently been described for different rodent models of heart failure. At least in right ventricular failure, this was associated with a severe, cardiomyocyte-specific hypothyroid condition. D3 expression is transcriptionally stimulated by factors that are implicated in cardiomyocyte hypertrophy, e.g., mitogen-activated protein kinases (MAPK) ERK, and p38 and Smad proteins activated by transforming growth factor-β (TGFβ). Hypoxia-inducible factor 1 (HIF-1) also stimulates D3 transcription. Reduced oxygen tension and subsequent HIF-1 signaling may occur in the hypertrophic cardiomyocyte, and this appears to account for the increased D3 expression in the model of right ventricular failure. It remains to be established whether stimulation of D3 activity and the ensuing local hypothyroid condition with reduction of energy turnover are an adaptive response or contribute to the further deterioration of contractile function and heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klein I, Ojamaa K (2001) Thyroid hormone and the cardiovascular system. N Engl J Med 344:501–509

    Article  PubMed  CAS  Google Scholar 

  2. Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12:331–343

    Article  PubMed  CAS  Google Scholar 

  3. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad and the ugly. Annu Rev Physiol 65:45–79

    Article  PubMed  CAS  Google Scholar 

  4. Molkentin JD (2004) Calcineurin-NFAT signalling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63:467–475

    Article  PubMed  CAS  Google Scholar 

  5. Selvetella G, Hirsch E, Notte A et al (2004) Adaptive and maladaptive hypertrophic pathways: points of convergence and divergence. Cardiovasc Res 63:373–380

    Article  PubMed  CAS  Google Scholar 

  6. Muller A, Simonides WS (2005) Regulation of myocardial SERCA2a expression in ventricular hypertrophy and heart failure. Future Cardiol 1:543–553

    Article  CAS  Google Scholar 

  7. Gereben B, Zavacki AM, Ribich S et al (2008) Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 29:898–938

    Article  PubMed  CAS  Google Scholar 

  8. Maia AL, Kim BW, Huang SA et al (2005) Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J Clin Invest 115:2524–2533

    Article  PubMed  CAS  Google Scholar 

  9. Baqui M, Botero D, Gereben B et al (2003) Human type 3 iodothyronine selenodeiodinase is located in the plasma membrane and undergoes rapid internalization to endosomes. J Biol Chem 278:1206–1211

    Article  PubMed  CAS  Google Scholar 

  10. Friesema EC, Kuiper GG, Jansen J et al (2006) Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism. Mol Endocrinol 20:2761–2772

    Article  PubMed  CAS  Google Scholar 

  11. Bianco AC, Kim BW (2006) Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest 116:2571–9

    Article  PubMed  CAS  Google Scholar 

  12. Dentice M, Bandyopadhyay A, Gereben B et al (2005) The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat Cell Biol 7:698–705

    Article  PubMed  CAS  Google Scholar 

  13. Dentice M, Luongo C, Huang S et al (2007) Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proc Natl Acad Sci USA 104:14466–14471

    Article  PubMed  CAS  Google Scholar 

  14. Gianakopoulos PJ, Skerjanc IS (2005) Hedgehog signaling induces cardiomyogenesis in P19 cells. J Biol Chem 280:21022–21028

    Article  PubMed  CAS  Google Scholar 

  15. Huang SA, Mulcahey MA, Crescenzi A et al (2005) TGF-b promotes inactivation of extracellular thyroid hormones via transcriptional stimulation of type 3 iodothyronine deiodinase. Mol Endocrinol 19:3126–3136

    Article  PubMed  CAS  Google Scholar 

  16. Gereben B, Zeold A, Dentice M et al (2008) Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol Life Sci 65:570–590

    Article  PubMed  CAS  Google Scholar 

  17. Huang SA, Tu HM, Harney JW et al (2000) Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. N Engl J Med 343:185–189

    Article  PubMed  CAS  Google Scholar 

  18. Huang SA, Fish SA, Dorfman DM et al (2002) A 21-year-old woman with consumptive hypothyroidism due to a vascular tumor expressing type 3 iodothyronine deiodinase. J Clin Endocrinol Metab 87:4457–4461

    Article  PubMed  CAS  Google Scholar 

  19. Ruppe MD, Huang SA, Jan de Beur SM (2005) Consumptive hypothyroidism caused by paraneoplastic production of type 3 iodothyronine deiodinase. Thyroid 15:1369–1372

    Article  PubMed  CAS  Google Scholar 

  20. Peeters RP, Wouters PJ, Kaptein, van Toor H, Visser TJ, Van den Berghe G (2003) Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab 88:3202–3211

    Article  PubMed  CAS  Google Scholar 

  21. Escobar-Morreale HF, Obregon MJ, Escobar del Rey F et al (1999) Tissue-specific patterns of changes in 3,5,3?-triiodo-L-thyronine concentrations in thyroidectomized rats infused with increasing doses of the hormone. Which are the regulatory mechanisms? Biochimie 81:453–462

    Article  PubMed  CAS  Google Scholar 

  22. Wassen FW, Schiel AE, Kuiper GG et al (2002) Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure. Endocrinology 143:2812–2815

    Article  PubMed  CAS  Google Scholar 

  23. Sabatino L, Iervasi G, Ferrazzi P et al (2000) A study of iodothyronine 5′-monodeiodinase activities in normal and pathological tissues in man and their comparison with activities in rat tissues. Life Sci 68:191–202

    Article  PubMed  CAS  Google Scholar 

  24. Dentice M, Morisco C, Vitale M et al (2003) The different cardiac expression of the type 2 iodothyronine deiodinase gene between human and rat is related to the differential response of the Dio2 genes to Nkx-2.5 and GATA-4 transcription factors. Mol Endocrinol 17:1508–21

    Article  PubMed  CAS  Google Scholar 

  25. Wagner MS, Morimoto RJ, Dora JM et al (2003) Hypothyroidism induces type 2 iodothyronine deiodinase expression in mouse heart and testis. J Mol Endocrinol 31:541–550

    Article  PubMed  CAS  Google Scholar 

  26. Pedraza PE, Obregon MJ, Escobar-Morreale HF et al (2006) Mechanisms of adaptation to iodine deficiency in rats: thyroid status is tissue specific. Its relevance for man. Endocrinology 147:2098–2108

    Article  PubMed  CAS  Google Scholar 

  27. Friesema EC, Jansen J, Milici C, Visser TJ (2005) Thyroid hormone transporters. Vitam Horm 70:137–167

    Article  PubMed  CAS  Google Scholar 

  28. Buermans HPJ, Redout EM, Schiel AE et al (2005) Microarray analysis reveals pivotal divergent mRNA expression profiles early in the development of either compensated ventricular hypertrophy or heart failure. Physiol Genomics 21:314–323

    Article  PubMed  CAS  Google Scholar 

  29. Simonides WS, Mulcahey MA, Redout EM et al (2008) Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Invest 118:975–983

    PubMed  CAS  Google Scholar 

  30. Trivieri MG, Oudit GY, Sah R et al (2006) Cardiac-specific elevations in thyroid hormone enhance contractility and prevent pressure overload-induced cardiac dysfunction. Proc Natl Acad Sci USA 103:6043–6048

    Article  PubMed  CAS  Google Scholar 

  31. Olivares EL, Marassi MP, Fortunato RS et al (2007) Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology 148:4786–4792

    Article  PubMed  CAS  Google Scholar 

  32. Pol C, Zuidwijk M, Deel E et al (2008) Left ventricular myocardial infarction in mice induces sustained cardiac deiodinase type III activity. XXVIII European Section Meeting of the International Society for Heart Research. Medimond International Proceedings, Bologna, Italy, pp 57–60

    Google Scholar 

  33. Pantos C, Mourouzis I, Xinaris C et al (2007) Time-dependent changes in the expression of thyroid hormone receptor alpha 1 in the myocardium after acute myocardial infarction: possible implications in cardiac remodelling. Eur J Endocrinol 156:415–24

    Article  PubMed  CAS  Google Scholar 

  34. Kinugawa K, Yonekura K, Ribeiro RC et al (2001) Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ Res 89:591–598

    Article  PubMed  CAS  Google Scholar 

  35. Kinugawa K, Minobe WA, Wood WM et al (2001) Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 103:1089–1094

    PubMed  CAS  Google Scholar 

  36. Belke DD, Gloss B, Swanson EA, Dillmann WH (2007) Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-alpha1 and-beta1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology 148:2870–2877

    Article  PubMed  CAS  Google Scholar 

  37. Rosenkranz S (2004) TGF-b1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63:423–432

    Article  PubMed  CAS  Google Scholar 

  38. See F, Thomas W, Way K et al (2004) p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. J Am Coll Cardiol 44:1679–1689

    Article  PubMed  CAS  Google Scholar 

  39. Semenza GL (2004) O2-regulated gene expresson: transcriptional control of cardiorespiratory physiology by HIF-1. J Appl Physiol 96:1173–1177

    Article  PubMed  CAS  Google Scholar 

  40. Des Tombes AL, van Beek-Harmsen BJ, Lee-de Groot MBE, van der Laarse WJ (2002) Calibrated histochemistry applied to oxygen supply and demand in hypertrophied myocardium. Microsc Res Tech 58:412–420

    Article  Google Scholar 

  41. Sano M, Minamino T, Toko H et al (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446:444–448

    Article  PubMed  CAS  Google Scholar 

  42. Kim CH, Cho YS, Chun YS et al (2002) Early expression of myocardial HIF-1 alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circ Res 90:E25–33

    Article  PubMed  CAS  Google Scholar 

  43. Euler-Taimor G, Heger J (2006) The complex pattern of SMAD signaling in the cardiovascular system. Cardiovasc Res 69:15–25

    Article  PubMed  CAS  Google Scholar 

  44. Boluyt MO, O’Neill L, Meredith AL et al (1994) Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure: marked upregulation of genes encoding extracellular matrix components. Circ Res 75:23–32

    PubMed  CAS  Google Scholar 

  45. Lim H, Zhu YZ (2006) Role of transforming growth factor-b in the progression of heart failure. Cell Mol Life Sci 63:2584–2596

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Simonides, W.S. (2009). Cardiac Thyroid-Hormone Deiodinative Pathways in Ventricular Hypertrophy and Heart Failure. In: Iervasi, G., Pingitore, A. (eds) Thyroid and Heart Failure. Springer, Milano. https://doi.org/10.1007/978-88-470-1143-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1143-4_7

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1142-7

  • Online ISBN: 978-88-470-1143-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics