Skip to main content

Low Triiodothyronine Syndrome as a Powerful Predictor of Death in Heart Failure

  • Chapter
Thyroid and Heart Failure

Abstract

Thyroid hormone (TH) has a critical role in cardiovascular homeostasis under both physiological and pathological conditions. THs, in particular the biologically active triiodothyronine (T3), modulate cardiac contractility, heart rate, diastolic function, and systemic vascular resistance through genomic, and nongenomic-mediated effects. In heart failure (HF), the main alteration of thyroid function is referred to as “low-T3 syndrome,” characterized by a reduction in serum T3 with normal levels of thyroxine (T4) and thyrotropin (thyroid-stimulating hormone, TSH). This syndrome, which affects approximately one-third of patients with more severe HF, is commonly interpreted as an adaptive factor minimizing the catabolic phenomena of illness. However, this interpretative hypothesis is now questioned: experimental data have shown potential negative effects of the low-T3 state in the progressive deterioration of cardiac function and myocardial remodeling in HF. In addition, prognostic studies have shown that T3 levels are a strong predictor of mortality in HF patients, also adding prognostic power to conventional cardiac parameters. All these data, together with the evidence of some benefit of administration of synthetic THs administration to HF patients in pilot studies, indicate that placebo-controlled prospective studies are now needed in order to better define the safety and prognostic effects of long-term treatment with synthetic THs in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bleumink GS, Knetsch AM, Sturkenboom MC et al (2004) Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure The Rotterdam Study. Eur Heart J 25:1614–1619

    Article  PubMed  Google Scholar 

  2. Pilo A, Iervasi G, Vitek F et al (1990) Thyroidal and peripheral production of 3,5,3¢-triiodothyronine in humans by mental analysis. Am J Physiol 258:E715–726

    PubMed  CAS  Google Scholar 

  3. Bianco AC, Salvatore D, Gereben B et al (2002) Biochemistry cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23:38–89

    Article  PubMed  CAS  Google Scholar 

  4. Croteau W, Davey JC, Galton VA et al (1996) Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J Clin Invest 98:405–417

    Article  PubMed  CAS  Google Scholar 

  5. Maia AL, Kim BW, Huang SA et al (2005) Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J Clin Invest 115:2524–2533

    Article  PubMed  CAS  Google Scholar 

  6. Davis PJ, Davis FB (2002) Nongenomic actions of thyroid hormone on the heart [review]. Thyroid 12:459–466

    Article  PubMed  CAS  Google Scholar 

  7. Dillmann WH, Barrieux A, Shanker R (1989) Influence of thyroid hormone on myosin heavy chain mRNA and other messenger RNAs in the rat heart. Endocr Res 15:565–577

    Article  PubMed  CAS  Google Scholar 

  8. Koss KL, Kranias EG (1996) Phospholamban: a prominent regulator of myocardial contractility. Circ Res 79:1059–1063

    PubMed  CAS  Google Scholar 

  9. Kiss E, Jakab G, Kranias EG et al (1994) Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+transport and myocardial relaxation. Circ Res 75:245–251

    PubMed  CAS  Google Scholar 

  10. Shimoni Y, Severson D, Giles W (1995) Thyroid status and potassium currents in rat ventricular myocytes. Am J Physiol 268:H576–H583

    PubMed  CAS  Google Scholar 

  11. Guo W, Kamiya K, Hojo M et al (1998) Regulation of Kv4.2 and Kv1.4 K+channel expression by myocardial hypertrophic factors in cultured newborn rat ventricular cells. J Mol Cell Cardiol 30:1449–1455

    Article  PubMed  CAS  Google Scholar 

  12. Bosch RF, Wang Z, Li GR et al (1999) Electrophysiological mechanisms by which hypothyroidism delays repolarization in guinea pig hearts Am J Physiol 277:H211–H220

    PubMed  CAS  Google Scholar 

  13. Kinugawa K, Wayne A, Minobe BS et al (2001) Signaling pathways responsible for fetal gene induction in the failing human heart. Evidence for altered thyroid hormone receptor gene expression. Circulation 103:1089–1094

    PubMed  CAS  Google Scholar 

  14. Katzeff HL, Powell SR, Ojamaa K (1997) Alterations in cardiac contractility and gene expression during low-T3 syndrome: prevention with T3. Am J Physiol Endocrinol Metab 273:951–956

    Google Scholar 

  15. Ladenson PW, Sherman SI, Baughman KL et al (1992) Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci U S A 89:5251–5255

    Article  PubMed  CAS  Google Scholar 

  16. Spinale FG (2002) Matrix metalloproteinases. Regulation and dysregulation in the failing heart. Circ Res 90:520–530

    Article  PubMed  CAS  Google Scholar 

  17. Peterson JT, Hallak H, Johnson L et al (2001) Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation 103:2303–2309

    PubMed  CAS  Google Scholar 

  18. Ghose RS, Mishra S, Ghosh G et al (2007) Thyroid hormone induces myocardial matrix degradation by activating matrix metalloproteinase-1. Matrix Biol 26:269–279

    Article  CAS  Google Scholar 

  19. Klein I, Ojamaa K (2001) Thyroid hormone and the cardiovascular system. N Engl J Med 344:501–509

    Article  PubMed  CAS  Google Scholar 

  20. Klein I (1990) Thyroid hormone and the cardiovascular system. Am J Med 88:631–637

    Article  PubMed  CAS  Google Scholar 

  21. Ojamaa K, Klemperer JD, Klein I (1996) Acute effects of thyroid hormone on vascular smooth muscle. Thyroid 6:505–512

    Article  PubMed  CAS  Google Scholar 

  22. Ojamaa K, Petrie JF, Balkman C (1994) Posttranscriptional modification of myosin heavy-chain gene expression in the hypertrophied rat myocardium. Proc Natl Acad Sci U S A 91:3468–3472

    Article  PubMed  CAS  Google Scholar 

  23. Ishikawa T, Chijiwa T, Hagiwara M et al (1989) Thyroid hormones directly interact with vascular smooth muscle strips. Mol Pharmacol 35:760–765

    PubMed  CAS  Google Scholar 

  24. Zwaveling J, Pfaffendorf M, Van Zwieten PA (1997) The direct effects of thyroid hormones on rat mesenteric resistance arteries. Fundam Clin Pharmacol 11:41–46

    Article  PubMed  CAS  Google Scholar 

  25. Rosler B (1967) Thyroxine and triiodothyronine protein complexes in serum Mesocricetus auratus and Gerbillus pyramidum [in German]. Acta Biol Med Ger 18:597–606

    PubMed  CAS  Google Scholar 

  26. Vargas F, Moreno JM, Rodriguez-Gomez I et al (2006) Vascular and renal function in experimental thyroid disorders. Eur J Endocrinol 154:197–212

    Article  PubMed  CAS  Google Scholar 

  27. Yoneda K, Takasu N, Higa S et al (1998) Direct effects of thyroid hormones on rat coronary artery: nongenomic effects of triiodothyronine and thyroxine. Thyroid 8:609–613

    Article  PubMed  CAS  Google Scholar 

  28. Liu Q, Cianachan AS, Lopaschuk GD (1998) Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion on ischemic rat hearts. Am J Physiol 275:E392–E399

    PubMed  CAS  Google Scholar 

  29. Klemperer JD, Zelano J, Helm RE et al (1995) Triiodothyronine improves left ventricular function without oxygen wasting effects after global hypothermic ischemia. J Thorac Cardiovasc Surg 109:457–465

    Article  PubMed  CAS  Google Scholar 

  30. Kimura K, Shinozaki Y, Jujo S et al (2006) Triiodothyronine acutely increases blood flow in the ventricles and kidneys of anesthesized rabbits. Thyroid 16:357–360

    Article  PubMed  CAS  Google Scholar 

  31. Mizuma H, Marukami M, Mori M (2001) Thyroid hormone activation in human vascular smooth muscle cells: expression of type II iodothyronine deiodinase. Circ Res 88:313–318

    PubMed  CAS  Google Scholar 

  32. Colantuoni A, Marchiafava PL, Lapi D et al (2005) The effects of tetraiodothyronine and triiodothyronine on hamster cheek pouch microcirculation. Am J Physiol Heart Circ Physiol 288:H1931–1936

    Article  PubMed  CAS  Google Scholar 

  33. Feng Q, Hedner T (1980) Endothelium-derived relaxing factor (EDRF) and nitric oxide (NO). II. Physiology, pharmacology and pathophysiological implications. Clin Physiol 10:503–526

    Article  Google Scholar 

  34. Marchant C, Brown L, Sernia C (1993) Renin-angiotensin system in thyroid dysfunction in rats. J Cardiovasc Pharmacol 22:449–455

    Article  PubMed  CAS  Google Scholar 

  35. Ganong WF (1982) Thyroid hormones and renin secretion. Life Sci 30:577–584

    Article  Google Scholar 

  36. Fletcher AK, Weetman AP (1998) Hypertension and hypothyroidism. J Hum Hypertens 12:79–82

    Article  PubMed  CAS  Google Scholar 

  37. Vergaro G, Emdin M (2008) Cardiac angiotensin receptor expression in hypothyroidism: back to fetal gene programme. J Physiol 1:7–8

    Google Scholar 

  38. Carneiro-Ramos MS, Diniz GP, Almeida JR et al (2007) Cardiac angiotensin II type I and type II receptors are increased in rats submitted to experimental hypothyroidism. J Physiol 583:213–223

    Article  PubMed  CAS  Google Scholar 

  39. Villabona C, Sahun M, Roca M et al (1999) Blood volumes and renal function in overt and subclinical primary hypothyroidism. Am J Med Sci 318:277–280

    Article  PubMed  CAS  Google Scholar 

  40. Fommei E, Iervasi G (2002) The role of thyroid hormone in blood pression homeostasis: evidence from short-term hypothyroidism in humans. J Clin Endocrinol Metab 87:1996–2000

    Article  PubMed  CAS  Google Scholar 

  41. Kahaly GJ, Dillmann WH (2005) Thyroid hormone action in the heart. Endocr Rev 26:704–728

    Article  PubMed  CAS  Google Scholar 

  42. Klein I, Danzi S (2007) Thyroid disease and the heart. Circulation 116:1725–1735

    Article  PubMed  Google Scholar 

  43. Pingitore A, Galli E, Barison A et al (2008) Acute effects of triiodothyronine replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrin Metab 93:1351–1358

    Article  CAS  Google Scholar 

  44. Ripoli A, Pingitore A, Favilli B et al (2005) Does subclinical hypothyroidism affect cardiac pump performance? Evidence from a magnetic resonance imaging study. J Am Coll Cardiol 45:439–445

    Article  PubMed  Google Scholar 

  45. Davis JD, Stern RA, Flashman LA (2003) Cognitive and neuropsychiatric aspects of subclinical hypothyroidism: significance in the elderly. Curr Psychiatry Rep 5:384–390

    Article  PubMed  Google Scholar 

  46. Caraccio N, Natali A, Sironi A et al (2005) Muscle metabolism and exercise tolerance in subclinical hypothyroidism: a controlled trial of levothyroxine. J Clin Endocrin Metab 90:4057–4062

    Article  CAS  Google Scholar 

  47. Hamilton MA, Stenvenson LW, Lu M et al (1990) Altered thyroid hormone metabolism in advanced heart failure. J Am Coll Cardiol 16:91–95

    Article  PubMed  CAS  Google Scholar 

  48. Opasich C, Pacini F, Ambrosino N et al (1996) Sick euthyroid syndrome in patients with moderate-to-severe chronic heart failure. Eur Heart J 17:1860–1866

    PubMed  CAS  Google Scholar 

  49. Pingitore A, Landi P, Taddei MC et al (2005) Triiodothyronine levels for risk stratification of patients with chronic heart failure. Am J Med 118:132–136

    Article  PubMed  CAS  Google Scholar 

  50. Ascheim DD, Hryniewicz K (2002) Thyroid hormone metabolism in patients with congestive heart failure: the low triiodothyronine state. Thyroid 12:511–515

    Article  PubMed  CAS  Google Scholar 

  51. Iervasi G, Pingitore A, Landi P et al (2003) Low-T3 syndrome: a strong prognostic predictor of death in patients with heart disease. Circulation 107:708–713

    Article  PubMed  Google Scholar 

  52. Kozdag G, Ural D, Vural A et al (1995) Relation between free triiodothyronine/free thyroxine ratio, echocardiographic parameters and mortality in dilated cardiomyopathy. Eur J Heart Fail 7:113–118

    Article  CAS  Google Scholar 

  53. Passino C, Pingitore A, Landi P et al (2009) Prognostic value of combined measurement of brain natriuretic peptide and triiodothyronine in heart failure. J Card Fail 15:35–40

    Article  PubMed  CAS  Google Scholar 

  54. De Groot LJ (ed) (1989) Thyroid function tests and effects of drugs on thyroid function. Saunders Philadelphia. USA

    Google Scholar 

  55. Pingitore A, Iervasi G, Barison A et al (2006) Early activation of an altered thyroid hormone profile in asymptomatic or mildly symptomatic idiopathic left ventricular dysfunction. J Card Fail 12:520–526

    Article  PubMed  CAS  Google Scholar 

  56. Iervasi G, Molinaro S, Landi P et al (2007) Association between increased mortality and mild thyroid dysfunction in cardiac patients. Arch Intern Med 167:1–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Iervasi, G., Sabatino, L., Nicolini, G. (2009). Low Triiodothyronine Syndrome as a Powerful Predictor of Death in Heart Failure. In: Iervasi, G., Pingitore, A. (eds) Thyroid and Heart Failure. Springer, Milano. https://doi.org/10.1007/978-88-470-1143-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1143-4_16

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1142-7

  • Online ISBN: 978-88-470-1143-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics