Mitochondrial Pathogenesis of Myopathies Due to Collagen VI Mutations

  • Nadir M. Maraldi
  • Stefano Squarzoni
  • Patrizia Sabatelli


Muscle cells are individually surrounded by a basal lamina which interacts with several constituents of the extracellular matrix (ECM), which contributes to the mechanical stability of contractile cells. A major component of the muscular ECM is collagen VI, which forms a microfibrillar network in association with the basal lamina. Mutations in the genes which encode any of the three chains of collagen VI have been reported in Bethlem myopathy and Ullrich congenital muscular dystrophy.


Basal Lamina Permeability Transition Pore Congenital Muscular Dystrophy Mitochondrial Defect Bethlem Myopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lampe AK, Bushby KMD (2005) Collagen VI related muscle disorders. J Med Genet 42:673–685PubMedCrossRefGoogle Scholar
  2. 2.
    Jöbis GJ, Keizers H, Vreijling JP et al (1996) Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nat Genet 14:113–115CrossRefGoogle Scholar
  3. 3.
    Pan TC, Zhang RZ, Pericak-Vance MA et al (1998) Missense mutation in a von Willebrand factor type A domain of the a3(VI) collagen gene (COL6A3) in a family with Bethlem myopathy. Hum Mol Genet 7:807–812PubMedCrossRefGoogle Scholar
  4. 4.
    Camacho Vanegas O, Bertini E, Zhang RZ et al (2001) Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc Natl Acad Sci US A 98:7516–7521CrossRefGoogle Scholar
  5. 5.
    Pan TC, Zhang RZ, Sudano DG et al (2003) New molecular mechanism for Ullrich congenital muscular dystrophy: A heterozygous in-frame deletion in the COL6A1 gene causes a severe phenotype. Am J Human Genet 73:355–369CrossRefGoogle Scholar
  6. 6.
    Baker NL, Morgelin M, Peat R et al (2005) Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy. Hum Mol Genet 14:279–293PubMedCrossRefGoogle Scholar
  7. 7.
    Knupp C, Pinali C, Munro PM et al (2006) Structural correlation between collagen VI micro fibrils and collagen VI banded aggregates. J Struct Biol 154:312–326PubMedCrossRefGoogle Scholar
  8. 8.
    Colombatti A, Mucignant MT, Bonaldo P (1995) Secretion and matrix assembly of recombinant type VI collagen. J Biol Chem 270:13105–13111PubMedCrossRefGoogle Scholar
  9. 9.
    Bonaldo P, Russo P, Bucciotti F et al (1990) Structural and functional features of the a3 chain indicate a bridging role for chicken collagen VI in connective tissues. Biochemistry 29:1245–1254PubMedCrossRefGoogle Scholar
  10. 10.
    Wiberg C, Hedblom E, Khairullina A et al (2001) Biglycan and decorin bind close to the N-terminal region of the collagen VI triple helix. J Biol Chem 276:18947–18952PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang R, Sabatelli P, Pan T et al (2002) Effects on collagen VI mRNA stability and microfibrillar assembly of three COL6A2 mutations in two families with Ullrich congenital muscular dystrophy. J Biol Chem 277:43557–43564PubMedCrossRefGoogle Scholar
  12. 12.
    Bonaldo P, Braghetta P, Zanetti M et al (1998) Collagen VI deficiency induces early onset myopathy in the mouse: An animal model for Bethlem myopathy. Hum Mol Genet 7:2135–2140PubMedCrossRefGoogle Scholar
  13. 13.
    Sabatelli P, Bonaldo P, Lattanzi G et al (2001) Collagen VI deficiency affects the organization of fibronectin in the extracellular matrix of cultured fibroblasts. Matrix Biology 20:475–486PubMedCrossRefGoogle Scholar
  14. 14.
    Irwin WA, Bergamin N, Sabatelli P et al (2003) Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet 35:367–371PubMedCrossRefGoogle Scholar
  15. 15.
    Kim JS, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470PubMedCrossRefGoogle Scholar
  16. 16.
    Nicholis DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitoxicity: Mortality and millivolts. Trends Neurosci 23:166–174CrossRefGoogle Scholar
  17. 17.
    Werner E, Werb Z (2002) Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J Cell Biol 158:357–368PubMedCrossRefGoogle Scholar
  18. 18.
    Ruhl M, Sahin E, Johannesen M et al (1999) Soluble collagen VI drives serumstarved fibroblasts through S phase and prevents apoptosis via down-regulation of Bax. J Biol Chem 274:34361–34368PubMedCrossRefGoogle Scholar
  19. 19.
    McNiven MA, Kim L, Krueger EW et al (2000) Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J Cell Biol 151:187–198PubMedCrossRefGoogle Scholar
  20. 20.
    Perfettini J, Roumier T, Kroemer G (2005) Mitochondrial fusion and fission in the control of apoptosis. Trends Cell Biol 15:179–183PubMedCrossRefGoogle Scholar
  21. 21.
    Skulachev VP (2001) Mitochondrial filaments and clusters as intracellular powertransmitting cables. Trends Biochem Sci 26:23–29PubMedCrossRefGoogle Scholar
  22. 22.
    Rizzuto R (2003) The collagen-mitochondria connection. Nat Genet 35:300–330PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Nadir M. Maraldi
    • 1
  • Stefano Squarzoni
    • 2
  • Patrizia Sabatelli
    • 2
  1. 1.Department of Anatomical Sciences and Physiopathology of the Musculoskeletal ApparatusUniversity of Bologna Laboratory of Cell Biology Orthopedic Institute “Rizzoli” I.O.R.BolognaItaly
  2. 2.Institute of Molecular Genetics Section of BolognaNational Research Council (C.N.R.) of Italy and Orthopedic Institute “Rizzoli“ I.O.R.BolognaItaly

Personalised recommendations