Molecular Modifications Induced by Physical Exercise: A Significant Role in Disease Prevention

  • Michele Guescini
  • Laura Stocchi
  • Chiara Di Loreto
  • Cristina Fatone
  • Pierpaolo De Feo
  • Vilberto Stocchi


The pathogenesis of metabolic syndrome is at present only partly understood; however, a sedentary lifestyle, an unhealthy diet, being overweight or obese, and still largely unknown genetic factors clearly interact to cause it [1,2]. People suffering from metabolic syndrome share three or more of the following characteristics: augmented waist circumference, elevated plasma triglycerides, low levels of high-density lipoprotein, increased waist circumference, glucose intolerance, and hypertension. Although several studies point to insulin resistance as the principal cause in the development of metabolic syndrome and cardiovascular disease, a growing body of evidence highlights the importance of aerobic capacity as a predictor of metabolic syndrome and cardiovascular diseases [3, 4, 5]. Aerobic capacity, how well an organism can metabolize oxygen and generate energy, depends on the efficiency of oxygen delivery to tissues and the subsequent effectiveness of respiration carried out by mitochondria in those tissues, especially in skeletal muscle.


Insulin Resistance Mitochondrial Biogenesis Human Skeletal Muscle Mitochondrial Content Molecular Modification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laaksonen DE et al (2004) Epidemiology and treatment of the metabolic syndrome. Ann Med 36:332–346PubMedCrossRefGoogle Scholar
  2. 2.
    Teran-Garcia M, Bouchard C (2007) Genetics of the metabolic syndrome. Appl Physiol Nutr Metab 32:89–114PubMedCrossRefGoogle Scholar
  3. 3.
    Petersen KF et al (2003) Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science 300:1140–1142PubMedCrossRefGoogle Scholar
  4. 4.
    Petersen KF et al (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671PubMedCrossRefGoogle Scholar
  5. 5.
    Wisloff U et al (2005) Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 307:418–420PubMedCrossRefGoogle Scholar
  6. 6.
    Chakravarthy MV, Booth FW (2004) Eating, exercise, and “thrifty” genotypes: Connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol 96:3–10PubMedCrossRefGoogle Scholar
  7. 7.
    Kelley DE et al (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950PubMedCrossRefGoogle Scholar
  8. 8.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795PubMedCrossRefGoogle Scholar
  9. 9.
    Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787PubMedCrossRefGoogle Scholar
  10. 10.
    Jacob S et al (1999) Association of increased intramyocellularlipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 48:1113–1119PubMedCrossRefGoogle Scholar
  11. 11.
    Kelley DE, Goodpaster BH, Storlien L (2002) Muscle triglyceride and insulin resistance. Annu Rev Nutr 22:325–346PubMedCrossRefGoogle Scholar
  12. 12.
    Lillioja S et al (1988) Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians. N Engl J Med 318:1217–1225PubMedCrossRefGoogle Scholar
  13. 13.
    Lillioja S et al (1993) Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med 329:1988–1992PubMedCrossRefGoogle Scholar
  14. 14.
    Azen SP et al (1998) TRIPOD (TRoglitazone In the Prevention Of Diabetes): A randomized, placebo-controlled trial of troglitazone in women with prior gestational diabetes mellitus. Control Clin Trials 19:217–231PubMedCrossRefGoogle Scholar
  15. 15.
    Kelley DE et al (2000) Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 278:E941–E948PubMedGoogle Scholar
  16. 16.
    Patti ME et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci 100:8466–8471PubMedCrossRefGoogle Scholar
  17. 17.
    Shulman GI et al (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322:223–228PubMedCrossRefGoogle Scholar
  18. 18.
    Rothman DL et al (1995) Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci 92:983–987PubMedCrossRefGoogle Scholar
  19. 19.
    Cline GW et al (1999) Impaired glucose transport as a cause of decreased insulinstimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 341:240–246PubMedCrossRefGoogle Scholar
  20. 20.
    Boden G, Shulman GI (2002) Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 32(Suppl 3):14–23PubMedCrossRefGoogle Scholar
  21. 21.
    Szczepaniak LS et al (1999) Measurement of intracellular triglyceride stores by H spectroscopy: Validation in vivo. Am J Physiol 276(5Pt1):E977–E989PubMedGoogle Scholar
  22. 22.
    Randle PJ et al (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789PubMedCrossRefGoogle Scholar
  23. 23.
    Roden M et al (1996) Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 97:2859–2865PubMedGoogle Scholar
  24. 24.
    Petersen KF et al (1998) 13C/31P NMR studies on the mechanism of insulin resistance in obesity. Diabetes 47:381–386PubMedCrossRefGoogle Scholar
  25. 25.
    Rothman DL, Shulman RG, Shulman GI (1992) 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate. Evidence for reduced insulindependent muscle glucose transport or phosphorylation activity in non-insulindependent diabetes mellitus. J Clin Invest 89:1069–1075PubMedGoogle Scholar
  26. 26.
    Dresner A et al (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103:253–259PubMedGoogle Scholar
  27. 27.
    Garvey WT et al (1992) Gene expression of GLUT4 in skeletal muscle from insulinresistant patients with obesity, IGT, GDM, and NIDDM. Diabetes 41:465–475PubMedCrossRefGoogle Scholar
  28. 28.
    Pedersen O et al (1990) Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes 39:865–870PubMedCrossRefGoogle Scholar
  29. 29.
    Kelley DE et al (1996) The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest 97:2705–2713PubMedGoogle Scholar
  30. 30.
    Zierath JR et al (1996) Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia 39:1180–1189PubMedCrossRefGoogle Scholar
  31. 31.
    Garvey WT et al (1998) Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest 101:2377–2386PubMedCrossRefGoogle Scholar
  32. 32.
    Griffin ME et al (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48:1270–1274PubMedCrossRefGoogle Scholar
  33. 33.
    Yin MJ, Yamamoto Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396:77–80PubMedCrossRefGoogle Scholar
  34. 34.
    Yuan M et al (2001) Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293:1673–1677PubMedCrossRefGoogle Scholar
  35. 35.
    Kim JK et al (2001) Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 108:437–446PubMedCrossRefGoogle Scholar
  36. 36.
    Hundal RS et al (2002) Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 109:1321–1326PubMedCrossRefGoogle Scholar
  37. 37.
    Yu C et al (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277:50230–50236PubMedCrossRefGoogle Scholar
  38. 38.
    Itani SI et al (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011PubMedCrossRefGoogle Scholar
  39. 39.
    Hotamisligil GS et al (1996) IRS-1-mediated inhibition of insulin receptortyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science 271:665–668PubMedCrossRefGoogle Scholar
  40. 40.
    Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176PubMedGoogle Scholar
  41. 41.
    Perseghin G et al (1996) Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med 335:1357–1362PubMedCrossRefGoogle Scholar
  42. 42.
    Moitra J et al (1998) Life without white fat: A transgenic mouse. Genes Dev 12:3168–3181PubMedGoogle Scholar
  43. 43.
    Michikawa Y et al (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286:774–779PubMedCrossRefGoogle Scholar
  44. 44.
    Mootha VK et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273PubMedCrossRefGoogle Scholar
  45. 45.
    Simoneau JA et al (1995) Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. Faseb J 9:273–278PubMedGoogle Scholar
  46. 46.
    He J, Goodpaster BH, Kelley DE (2004) Effects of weight loss and physical activity on muscle lipid content and droplet size. Obes Res 12:761–769PubMedGoogle Scholar
  47. 47.
    Short KR et al (2003) Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52:1888–1896PubMedCrossRefGoogle Scholar
  48. 48.
    Menshikova EV et al (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 61:534–540PubMedGoogle Scholar
  49. 49.
    Heilbronn LK et al (2007) Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab 92:1467–1473PubMedCrossRefGoogle Scholar
  50. 50.
    Short KR et al (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci 102:5618–5623PubMedCrossRefGoogle Scholar
  51. 51.
    Hunter GR et al (2002) Age is independently related to muscle metabolic capacity in premenopausal women. J Appl Physiol 93:70–76PubMedGoogle Scholar
  52. 52.
    Carmeli E, Coleman R, Reznick AZ (2002) The biochemistry of aging muscle. Exp Gerontol 37:477–489PubMedCrossRefGoogle Scholar
  53. 53.
    McArdle A, Vasilaki A, Jackson M (2002) Exercise and skeletal muscle ageing: Cellular and molecular mechanisms. Ageing Res Rev 1:79–93PubMedCrossRefGoogle Scholar
  54. 54.
    Short KR, Nair KS (1999) Mechanisms of sarcopenia of aging. J Endocrinol Invest 22(5 Suppl):95–105PubMedGoogle Scholar
  55. 55.
    Rooyackers OE et al (1996) Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci 93:15364–15369PubMedCrossRefGoogle Scholar
  56. 56.
    Balagopal P et al (1997) Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. Am J Physiol 273(4 Pt 1):E790–E800PubMedGoogle Scholar
  57. 57.
    Adhihetty PJ et al (2003) Plasticity of skeletal muscle mitochondria in response to contractile activity. Exp Physiol 88:99–107PubMedCrossRefGoogle Scholar
  58. 58.
    Melov S et al (1995) Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Res 23:4122–4126PubMedCrossRefGoogle Scholar
  59. 59.
    Lee CM, Weindruch R, Aiken JM (1997) Age-associated alterations of the mitochondrial genome. Free Radic Biol Med 22:1259–1269PubMedCrossRefGoogle Scholar
  60. 60.
    Barazzoni R, Short KR, Nair KS (2000) Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem 275:3343–3347PubMedCrossRefGoogle Scholar
  61. 61.
    Welle S et al (2003) Reduced amount of mitochondrial DNA in aged human muscle. J Appl Physiol 94:1479–1484PubMedGoogle Scholar
  62. 62.
    Boffoli D et al (1994) Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226:73–82PubMedGoogle Scholar
  63. 63.
    Trounce I, Byrne E, Marzuki S (1989) Decline in skeletal muscle mitochondrial respiratory chain function: Possible factor in ageing. Lancet 1:637–639PubMedCrossRefGoogle Scholar
  64. 64.
    Harman D (1956) Aging: A theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedGoogle Scholar
  65. 65.
    Trifunovic A et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423PubMedCrossRefGoogle Scholar
  66. 66.
    Bassett CN, Montine TJ (2003) Lipoproteins and lipid peroxidation in Alzheimer’s disease. J Nutr Health Aging 7:24–29PubMedGoogle Scholar
  67. 67.
    Ritov VB et al (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54:8–14PubMedCrossRefGoogle Scholar
  68. 68.
    Hood DA (2001) Invited review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90:1137–1157PubMedGoogle Scholar
  69. 69.
    Koves TR et al (2005) Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism. Am J Physiol Cell Physiol 288:C1074–C1082PubMedCrossRefGoogle Scholar
  70. 70.
    Hoppeler H, Fluck M (2003) Plasticity of skeletal muscle mitochondria: Structure and function. Med Sci Sports Exerc 35:95–104PubMedCrossRefGoogle Scholar
  71. 71.
    Tonkonogi M, Harris B, Sahlin K (1998) Mitochondrial oxidative function in human saponin-skinned muscle fibres: Effects of prolonged exercise. J Physiol 510(Pt 1):279–286PubMedCrossRefGoogle Scholar
  72. 72.
    Zoll J, et al (2002) Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol 543(Pt l):191–200PubMedCrossRefGoogle Scholar
  73. 73.
    Hood DA et al (2006) Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209(Pt 12):2265–2275PubMedCrossRefGoogle Scholar
  74. 74.
    Irrcher I et al (2003) Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med 33:783–793PubMedCrossRefGoogle Scholar
  75. 75.
    Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptorgamma coactivator 1 alpha (PGC-1 alpha): Transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90PubMedCrossRefGoogle Scholar
  76. 76.
    Baar K (2004) Involvement of PPAR gamma co-activator-1, nuclear respiratoryfactors 1 and 2, and PPAR alpha in the adaptive response to endurance exercise. Proc Nutr Soc 63:269–273PubMedCrossRefGoogle Scholar
  77. 77.
    Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25:1354–1366PubMedCrossRefGoogle Scholar
  78. 78.
    Kang D, Hamasaki N (2005) Mitochondrial transcription factor A in the maintenance of mitochondrial DNA: Overview of its multiple roles. Ann N Y Acad Sci 042:101–108CrossRefGoogle Scholar
  79. 79.
    Hsieh YC et al (2006) Flutamide restores cardiac function after trauma-hemorrhage via an estrogen-dependent pathway through upregulation of PGC-1. Am J Physiol Heart Circ Physiol 290:H416–H423PubMedCrossRefGoogle Scholar
  80. 80.
    Bergström J (1962) Muscle electrolytes in man. Scand J Clin Lab Invest 68:1–110Google Scholar
  81. 81.
    Simoneau JA et al (1986) Repeatability of fibre type and enzyme activity measurements in human skeletal muscle. Clin Physiol 6:347–356PubMedGoogle Scholar
  82. 82.
    Hayot M et al (2005) Skeletal muscle microbiopsy: A validation study of a minimally invasive technique. Eur Respir J 25:431–440PubMedCrossRefGoogle Scholar
  83. 83.
    Fluck M et al (2005) Transcriptional profiling of tissue plasticity: Role of shifts in gene expression and technical limitations. J Appl Physiol 99:397–413PubMedCrossRefGoogle Scholar
  84. 84.
    Welker JA et al (2000) The percutaneous needle biopsy is safe and recommended in the diagnosis of musculoskeletal masses. Cancer 89:2677–2686PubMedCrossRefGoogle Scholar
  85. 85.
    Cote AM et al (1992) Needle muscle biopsy with the automatic biopsy instrument. Neurology 42:2212–2213PubMedGoogle Scholar
  86. 86.
    Magistris MR et al (1998) Needle muscle biopsy in the investigation of neuromuscular disorders. Muscle Nerve 21:194–200PubMedCrossRefGoogle Scholar
  87. 87.
    Vescovo G et al (1998) Improved exercise tolerance after losartan and enalapril in heart failure: Correlation with changes in skeletal muscle myosin heavy chain composition. Circulation 98:1742–1749PubMedGoogle Scholar
  88. 88.
    Vescovo G et al (1996) Specific changes in skeletal muscle myosin heavy chain composition in cardiac failure: Differences compared with disuse atrophy as assessed on microbiopsies by high resolution electrophoresis. Heart 76:337–343PubMedCrossRefGoogle Scholar
  89. 89.
    Guescini M et al (2007) Fine needle aspiration coupled with real-time PCR: A painless methodology to study adaptive functional changes in skeletal muscle. Nutr Metab Cardiovasc Dis (epub ahead of print)Google Scholar
  90. 90.
    Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370PubMedCrossRefGoogle Scholar
  91. 91.
    Norrbom J et al (2004) PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 96:189–194PubMedCrossRefGoogle Scholar
  92. 92.
    Plomgaard P et al (2006) The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles. J Appl Physiol 101:817–825PubMedCrossRefGoogle Scholar
  93. 93.
    Russell AP et al (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52:2874–2881PubMedCrossRefGoogle Scholar
  94. 94.
    Howald H et al (1985) Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch 403:369–376PubMedCrossRefGoogle Scholar
  95. 95.
    Garnier A et al (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. Faseb J 19:43–52PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Michele Guescini
    • 1
  • Laura Stocchi
    • 1
  • Chiara Di Loreto
    • 2
  • Cristina Fatone
    • 2
  • Pierpaolo De Feo
    • 2
  • Vilberto Stocchi
    • 3
  1. 1.Institute of Health and Physical ExerciseUniversity of Urbino “Carlo Bo”UrbinoItaly
  2. 2.Department of Internal Medicine Section Internal Medicine Endocrine and Metabolic SciencesUniversity of PerugiaPerugiaItaly
  3. 3.Institute of Biological Chemistry “Giorgio Fornaini” and Institute of Health and Physical ExerciseUniversity of Urbino “Carlo Bo”UrbinoItaly

Personalised recommendations